37 research outputs found

    Outbreak of H7N8 Low Pathogenic Avian Influenza in Commercial Turkeys with Spontaneous Mutation to Highly Pathogenic Avian Influenza

    Get PDF
    Highly pathogenic avian influenza (HPAI) subtype H7N8 was detected in commercial turkeys in January 2016. Control zone surveillance discovered a progenitor low pathogenic avian influenza (LPAI) virus in surrounding turkey flocks. Data analysis supports a single LPAI virus introduction followed by spontaneous mutation to HPAI on a single premises

    Outbreak of H7N8 Low Pathogenic Avian Influenza in Commercial Turkeys with Spontaneous Mutation to Highly Pathogenic Avian Influenza

    Get PDF
    Highly pathogenic avian influenza (HPAI) subtype H7N8 was detected in commercial turkeys in January 2016. Control zone surveillance discovered a progenitor low pathogenic avian influenza (LPAI) virus in surrounding turkey flocks. Data analysis supports a single LPAI virus introduction followed by spontaneous mutation to HPAI on a single premises

    H7N1 Low Pathogenicity Avian Influenza Viruses in Poultry in the United States During 2018

    Get PDF
    Here, we report three detections of H7N1 low pathogenicity avian influenza viruses (LPAIV) from poultry in Missouri (n¼2) and Texas (n¼1) during February and March 2018. Complete genome sequencing and comparative phylogenetic analysis suggest that the H7 LPAIV precursor viruses were circulating in wild birds in North America during the fall and winter of 2017 and spilled over into domestic poultry in Texas and Missouri independently during the spring of 2018. RESUMEN. Nota de investigacio´n—Virus de la influenza aviar de baja patogenicidad H7N1 en avicultura, Estados Unidos, 2018. En este art´ıculo se reportan tres detecciones del virus de influenza aviar de baja patogenicidad H7N1 (LPAIV) en avicultura en Missouri (n¼2) y Texas (n¼1) durante febrero y marzo del 2018. La secuenciacio´n completa del genoma y el ana´lisis filogene´tico comparativo sugieren que precursores de este virus de influenza de baja patogenicidad H7 circulaban en aves silvestres en Ame´rica del Norte durante el oton˜o y el invierno de 2017 y se propagaron a las aves comerciales en Texas y Missouri de forma independiente durante la primavera del 2018

    Highly Pathogenic Avian Influenza Viruses and Generation of Novel Reassortants, United States, 2014–2015

    Get PDF
    Asian highly pathogenic avian influenza A(H5N8) viruses spread into North America in 2014 during autumn bird migration. Complete genome sequencing and phylogenetic analysis of 32 H5 viruses identified novel H5N1, H5N2, and H5N8 viruses that emerged in late 2014 through reassortment with North American low-pathogenicity avian influenza viruses

    Highly Pathogenic Avian Influenza Viruses and Generation of Novel Reassortants, United States, 2014–2015

    Get PDF
    Asian highly pathogenic avian influenza A(H5N8) viruses spread into North America in 2014 during autumn bird migration. Complete genome sequencing and phylogenetic analysis of 32 H5 viruses identified novel H5N1, H5N2, and H5N8 viruses that emerged in late 2014 through reassortment with North American low-pathogenicity avian influenza viruses

    Role for migratory wild birds in the global spread of avian influenza H5N8

    Get PDF
    Avian influenza viruses affect both poultry production and public health. A subtype H5N8 (clade 2.3.4.4) virus, following an outbreak in poultry in South Korea in January 2014, rapidly spread worldwide in 2014-2015. Our analysis of H5N8 viral sequences, epidemiological investigations, waterfowl migration, and poultry trade showed that long-distance migratory birds can play a major role in the global spread of avian influenza viruses. Further, we found that the hemagglutinin of clade 2.3.4.4 virus was remarkably promiscuous, creating reassortants with multiple neuraminidase subtypes. Improving our understanding of the circumpolar circulation of avian influenza viruses in migratory waterfowl will help to provide early warning of threats from avian influenza to poultry, and potentially human, health

    Reoccurrence of Avian Influenza A(H5N2) Virus Clade 2.3.4.4 in Wild Birds, Alaska, USA, 2016

    Get PDF
    We report reoccurrence of highly pathogenic avian influenza A(H5N2) virus clade 2.3.4.4 in a wild mallard in Alaska, USA, in August 2016. Identification of this virus in a migratory species confirms low-frequency persistence in North America and the potential for re-dissemination of the virus during the 2016 fall migration

    Virus Adaptation Following Experimental Infection of Chickens with a Domestic Duck Low Pathogenic Avian Influenza Isolate from the 2017 USA H7N9 Outbreak Identifies Polymorphic Mutations in Multiple Gene Segments

    No full text
    In March 2017, highly pathogenic (HP) and low pathogenic (LP) avian influenza virus (AIV) subtype H7N9 were detected from poultry farms and backyard birds in several states in the southeast United States. Because interspecies transmission is a known mechanism for evolution of AIVs, we sought to characterize infection and transmission of a domestic duck-origin H7N9 LPAIV in chickens and genetically compare the viruses replicating in the chickens to the original H7N9 clinical field samples used as inoculum. The results of the experimental infection demonstrated virus replication and transmission in chickens, with overt clinical signs of disease and shedding through both oral and cloacal routes. Unexpectedly, higher levels of virus shedding were observed in some cloacal swabs. Next generation sequencing (NGS) analysis identified numerous non-synonymous mutations at the consensus level in the polymerase genes (i.e., PA, PB1, and PB2) and the hemagglutinin (HA) receptor binding site in viruses recovered from chickens, indicating possible virus adaptation in the new host. For comparison, NGS analysis of clinical samples obtained from duck specimen collected during the outbreak indicated three polymorphic sides in the M1 segment and a minor population of viruses carrying the D139N (21.4%) substitution in the NS1 segment. Interestingly, at consensus level, A/duck/Alabama (H7N9) had isoleucine at position 105 in NP protein, similar to HPAIV (H7N9) but not to LPAIV (H7N9) isolated from the same 2017 influenza outbreak in the US. Taken together, this work demonstrates that the H7N9 viruses could readily jump between avian species, which may have contributed to the evolution of the virus and its spread in the region

    Highly Pathogenic Avian Influenza A(H7N9) Virus, Tennessee, USA, March 2017

    No full text
    In March 2017, highly pathogenic avian influenza A(H7N9) was detected at 2 poultry farms in Tennessee, USA. Surveillance data and genetic analyses indicated multiple introductions of low pathogenicity avian influenza virus before mutation to high pathogenicity and interfarm transmission. Poultry surveillance should continue because low pathogenicity viruses circulate and spill over into commercial poultry

    Transmission Dynamics of Highly Pathogenic Avian Influenza Virus A(H5Nx) Clade 2.3.4.4, North America, 2014–2015

    No full text
    Eurasia highly pathogenic avian influenza virus (HPAIV) H5 clade 2.3.4.4 emerged in North America at the end of 2014 and caused outbreaks affecting >50 million poultry in the United States before eradication in June 2015. We investigated the underlying ecologic and epidemiologic processes associated with this viral spread by performing a comparative genomic study using 268 full-length genome sequences and data from outbreak investigations. Reassortant HPAIV H5N2 circulated in wild birds along the Pacific flyway before several spillover events transmitting the virus to poultry farms. Our analysis suggests that >3 separate introductions of HPAIV H5N2 into Midwest states occurred during March–June 2015; transmission to Midwest poultry farms from Pacific wild birds occurred ≈1.7–2.4 months before detection. Once established in poultry, the virus rapidly spread between turkey and chicken farms in neighboring states. Enhanced biosecurity is required to prevent the introduction and dissemination of HPAIV across the poultry industry
    corecore