121 research outputs found

    How policy implementation shapes the impact of U.S. food assistance policies: the case study of the Child and Adult Care Food Program

    Get PDF
    Much of the chronic disease burden in the U.S. population can be traced to poor diet. There has been a sustained focus on influencing children's diets and encouraging healthier eating habits by changing policies for what foods and beverages can be served to children through large federally-funded nutrition assistance programs. Yet without attention to how nutrition policies are implemented, and the surrounding context for these policies, these policy changes may not have the intended results. In this perspective, we used Bullock et al.'s (2021) Process Model of Implementation from a Policy Perspective to analyze how the complexities of the implementation process of large-scale nutrition policies can dilute potential health outcomes. We examine the Child and Adult Care Food Program (CACFP), a federal program focused on supporting the provision of nutritious meals to over 4 million children attending childcare, as a case study. We examine how the larger societal contexts of food insecurity, attitudes towards the social safety net, and a fragmented childcare system interact with CACFP. We review the “policy package” of CACFP itself, in terms of its regulatory requirements, and the various federal, state, and local implementation agencies that shape CACFP's on-the-ground implementation. We then review the evidence for how each component of the CACFP policy implementation process impacts uptake, costs, feasibility, equity, and effectiveness at improving children's nutrition. Our case study demonstrates how public health researchers and practitioners must consider the complexities of policy implementation processes to ensure effective implementation of nutrition policies intended to improve population health

    Food insecurity and the role of food assistance programs in supporting diet quality during the COVID-19 pandemic in Massachusetts

    Get PDF
    BackgroundEconomic and supply chain shocks resulting from the COVID-19 pandemic in 2020 led to substantial increases in the numbers of individuals experiencing food-related hardship in the US, with programs aimed at addressing food insecurity like the Supplemental Nutrition Assistance Program (SNAP) and food pantries seeing significant upticks in utilization. While these programs have improved food access overall, the extent to which diet quality changed, and whether they helped mitigate diet quality disruptions, is not well understood.ObjectiveTo evaluate food insecurity, food pantry and/or SNAP participation associations with both diet quality as well as perceived disruptions in diet during the COVID-19 pandemic among Massachusetts adults with lower incomes.MethodsWe analyzed complete-case data from 1,256 individuals with complete data from a cross-sectional online survey of adults (ages 18 years and above) living in Massachusetts who responded to “The MA Statewide Food Access Survey” between October 2020 through January 2021. Study recruitment and survey administration were performed by The Greater Boston Food Bank. We excluded respondents who reported participation in assistance programs but were ineligible (n = 168), those who provided straightlined responses to the food frequency questionnaire component of the survey (n = 34), those with incomes above 300% of the federal poverty level (n = 1,427), those who completed the survey in 2021 (n = 8), and those who reported improved food insecurity (n = 55). Current dietary intake was assessed via food frequency questionnaire. Using Bayesian regression models, we examined associations between pandemic food insecurity, perceived disruption in diet, diet quality, and intakes of individual foods among those who completed a survey in 2020. We assessed interactions by pantry and SNAP participation to determine whether participation moderated these relationships.ResultsIndividuals experiencing food insecurity reported greater disruption in diet during the pandemic and reduced consumption of healthy/unhealthy foods. Pantry participation attenuated significant associations between food insecurity and lower consumption of unhealthy (b = −1.13 [95% CI −1.97 to −0.31]) and healthy foods (b = −1.07 [−1.82 to −0.34]) to null (unhealthy foods: −0.70 [−2.24 to 0.84]; healthy foods: 0.30 [−1.17 to 1.74]), whereas SNAP participation attenuated associations for healthy foods alone (from −1.07 [−1.82 to −0.34] to −0.75 [−1.83 to 0.32]). Results were robust to choice of prior as well as to alternative modeling specifications.ConclusionAmong adults with lower incomes, those experiencing food insecurity consumed less food, regardless of healthfulness, compared to individuals not experiencing food insecurity. Participation in safety-net programs, including SNAP and pantry participation, buffered this phenomenon. Continued support of SNAP and the food bank network and a focus on access to affordable healthy foods may simultaneously alleviate hunger while improving nutrition security

    BRCA2 polymorphic stop codon K3326X and the risk of breast, prostate, and ovarian cancers

    Get PDF
    Background: The K3326X variant in BRCA2 (BRCA2*c.9976A>T; p.Lys3326*; rs11571833) has been found to be associated with small increased risks of breast cancer. However, it is not clear to what extent linkage disequilibrium with fully pathogenic mutations might account for this association. There is scant information about the effect of K3326X in other hormone-related cancers. Methods: Using weighted logistic regression, we analyzed data from the large iCOGS study including 76 637 cancer case patients and 83 796 control patients to estimate odds ratios (ORw) and 95% confidence intervals (CIs) for K3326X variant carriers in relation to breast, ovarian, and prostate cancer risks, with weights defined as probability of not having a pathogenic BRCA2 variant. Using Cox proportional hazards modeling, we also examined the associations of K3326X with breast and ovarian cancer risks among 7183 BRCA1 variant carriers. All statistical tests were two-sided. Results: The K3326X variant was associated with breast (ORw = 1.28, 95% CI = 1.17 to 1.40, P = 5.9x10- 6) and invasive ovarian cancer (ORw = 1.26, 95% CI = 1.10 to 1.43, P = 3.8x10-3). These associations were stronger for serous ovarian cancer and for estrogen receptor–negative breast cancer (ORw = 1.46, 95% CI = 1.2 to 1.70, P = 3.4x10-5 and ORw = 1.50, 95% CI = 1.28 to 1.76, P = 4.1x10-5, respectively). For BRCA1 mutation carriers, there was a statistically significant inverse association of the K3326X variant with risk of ovarian cancer (HR = 0.43, 95% CI = 0.22 to 0.84, P = .013) but no association with breast cancer. No association with prostate cancer was observed. Conclusions: Our study provides evidence that the K3326X variant is associated with risk of developing breast and ovarian cancers independent of other pathogenic variants in BRCA2. Further studies are needed to determine the biological mechanism of action responsible for these associations

    A 2 × 2 factorial, randomised, open-label trial to determine the clinical and cost-effectiveness of hypertonic saline (HTS 6%) and carbocisteine for airway clearance versus usual care over 52 weeks in adults with bronchiectasis:a protocol for the CLEAR clinical trial

    Get PDF
    Background: Current guidelines for the management of bronchiectasis (BE) highlight the lack of evidence to recommend mucoactive agents, such as hypertonic saline (HTS) and carbocisteine, to aid sputum removal as part of standard care. We hypothesise that mucoactive agents (HTS or carbocisteine, or a combination) are effective in reducing exacerbations over a 52-week period, compared to usual care. Methods: This is a 52-week, 2 × 2 factorial, randomized, open-label trial to determine the clinical effectiveness and cost effectiveness of HTS 6% and carbocisteine for airway clearance versus usual care-the Clinical and cost-effectiveness of hypertonic saline (HTS 6%) and carbocisteine for airway clearance versus usual care (CLEAR) trial. Patients will be randomised to (1) standard care and twice-daily nebulised HTS (6%), (2) standard care and carbocisteine (750 mg three times per day until visit 3, reducing to 750 mg twice per day), (3) standard care and combination of twice-daily nebulised HTS and carbocisteine, or (4) standard care. The primary outcome is the mean number of exacerbations over 52 weeks. Key inclusion criteria are as follows: Adults with a diagnosis of BE on computed tomography, BE as the primary respiratory diagnosis, and two or more pulmonary exacerbations in the last year requiring antibiotics and production of daily sputum. Discussion: This trial's pragmatic research design avoids the significant costs associated with double-blind trials whilst optimising rigour in other areas of trial delivery. The CLEAR trial will provide evidence as to whether HTS, carbocisteine or both are effective and cost effective for patients with BE. Trial registration: EudraCT number: 2017-000664-14 (first entered in the database on 20 October 2017). ISRCTN.com, ISRCTN89040295. Registered on 6 July/2018. Funder: National Institute for Health Research, Health Technology Assessment Programme (15/100/01). Sponsor: Belfast Health and Social Care Trust. Ethics Reference Number: 17/NE/0339. Protocol version: V3.0 Final_14052018

    Enrichment of putative PAX8 target genes at serous epithelial ovarian cancer susceptibility loci

    Get PDF
    Background: Genome-wide association studies (GWAS) have identified 18 loci associated with serous ovarian cancer (SOC) susceptibility but the biological mechanisms driving these findings remain poorly characterised. Germline cancer risk loci may be enriched for target genes of transcription factors (TFs) critical to somatic tumorigenesis. Methods: All 615 TF-target sets from the Molecular Signatures Database were evaluated using gene set enrichment analysis (GSEA) and three GWAS for SOC risk: discovery (2196 cases/4396 controls), replication (7035 cases/21 693 controls; independent from discovery), and combined (9627 cases/30 845 controls; including additional individuals). Results: The PAX8-target gene set was ranked 1/615 in the discovery (PGSEA<0.001; FDR=0.21), 7/615 in the replication (PGSEA=0.004; FDR=0.37), and 1/615 in the combined (PGSEA<0.001; FDR=0.21) studies. Adding other genes reported to interact with PAX8 in the literature to the PAX8-target set and applying an alternative to GSEA, interval enrichment, further confirmed this association (P=0.006). Fifteen of the 157 genes from this expanded PAX8 pathway were near eight loci associated with SOC risk at P<10−5 (including six with P<5 × 10−8). The pathway was also associated with differential gene expression after shRNA-mediated silencing of PAX8 in HeyA8 (PGSEA=0.025) and IGROV1 (PGSEA=0.004) SOC cells and several PAX8 targets near SOC risk loci demonstrated in vitro transcriptomic perturbation. Conclusions: Putative PAX8 target genes are enriched for common SOC risk variants. This finding from our agnostic evaluation is of particular interest given that PAX8 is well-established as a specific marker for the cell of origin of SOC

    Assessing the genetic architecture of epithelial ovarian cancer histological subtypes.

    Get PDF
    Epithelial ovarian cancer (EOC) is one of the deadliest common cancers. The five most common types of disease are high-grade and low-grade serous, endometrioid, mucinous and clear cell carcinoma. Each of these subtypes present distinct molecular pathogeneses and sensitivities to treatments. Recent studies show that certain genetic variants confer susceptibility to all subtypes while other variants are subtype-specific. Here, we perform an extensive analysis of the genetic architecture of EOC subtypes. To this end, we used data of 10,014 invasive EOC patients and 21,233 controls from the Ovarian Cancer Association Consortium genotyped in the iCOGS array (211,155 SNPs). We estimate the array heritability (attributable to variants tagged on arrays) of each subtype and their genetic correlations. We also look for genetic overlaps with factors such as obesity, smoking behaviors, diabetes, age at menarche and height. We estimated the array heritabilities of high-grade serous disease ([Formula: see text] = 8.8 ± 1.1 %), endometrioid ([Formula: see text] = 3.2 ± 1.6 %), clear cell ([Formula: see text] = 6.7 ± 3.3 %) and all EOC ([Formula: see text] = 5.6 ± 0.6 %). Known associated loci contributed approximately 40 % of the total array heritability for each subtype. The contribution of each chromosome to the total heritability was not proportional to chromosome size. Through bivariate and cross-trait LD score regression, we found evidence of shared genetic backgrounds between the three high-grade subtypes: serous, endometrioid and undifferentiated. Finally, we found significant genetic correlations of all EOC with diabetes and obesity using a polygenic prediction approach.The Ovarian Cancer Association Consortium is supported by a grant from the Ovarian Cancer Research Fund thanks to donations by the family and friends of Kathryn Sladek Smith (PPD/RPCI.07). The Nurses’ Health Studies would like to thank the participants and staff of the Nurses' Health Study and Nurses' Health Study II for their valuable contributions as well as the following state cancer registries for their help: AL, AZ, AR, CA, CO, CT, DE, FL, GA, ID, IL, IN, IA, KY, LA, ME, MD, MA, MI, NE, NH, NJ, NY, NC, ND, OH, OK, OR, PA, RI, SC, TN, TX, VA, WA, WY. The authors assume full responsibility for analyses and interpretation of these data. Funding of the constituent studies was provided by the California Cancer Research Program (00-01389V-20170, N01-CN25403, 2II0200); the Canadian Institutes of Health Research (MOP-86727); Cancer Australia; Cancer Council Victoria; Cancer Council Queensland; Cancer Council New South Wales; Cancer Council South Australia; Cancer Council Tasmania; Cancer Foundation of Western Australia; the Cancer Institute of New Jersey; Cancer Research UK (C490/A6187, C490/A10119, C490/A10124); the Danish Cancer Society (94-222-52); the ELAN Program of the University of Erlangen-Nuremberg; the Eve Appeal; the Helsinki University Central Hospital Research Fund; Helse Vest; the Norwegian Cancer Society; the Norwegian Research Council; the Ovarian Cancer Research Fund; Nationaal Kankerplan of Belgium; the L & S Milken Foundation; the Polish Ministry of Science and Higher Education (4 PO5C 028 14, 2 PO5A 068 27); the Roswell Park Cancer Institute Alliance Foundation; the US National Cancer Institute (K07-CA095666, K07-CA80668, K07-CA143047, K22-CA138563, N01-CN55424, N01-PC67001, N01-PC067010, N01-PC035137, P01-CA017054, P01-CA087696, P30-CA072720, P30-CA15083, P30-CA008748, P50-CA159981, P50-CA105009, P50-CA136393, R01-CA149429, R01-CA014089, R01-CA016056, R01-CA017054, R01-CA049449, R01-CA050385, R01-CA054419, R01-CA058598, R01-CA058860, R01-CA061107, R01-CA061132, R01-CA063678, R01-CA063682, R01-CA067262, R01-CA071766, R01-CA074850, R01-CA080978, R01-CA083918, R01-CA087538, R01-CA092044, R01-CA095023, R01-CA122443, R01-CA112523, R01-CA114343, R01-CA126841, R01-CA136924, R03-CA113148, R03-CA115195, U01-CA069417, U01-CA071966, UM1-CA186107, UM1-CA176726 and Intramural research funds); the NIH/National Center for Research Resources/General Clinical Research Center (MO1-RR000056); the US Army Medical Research and Material Command (DAMD17-01-1-0729, DAMD17-02-1-0666, DAMD17-02-1-0669, W81XWH-07-0449, W81XWH-10-1-02802); the US Public Health Service (PSA-042205); the National Health and Medical Research Council of Australia (199600 and 400281); the German Federal Ministry of Education and Research of Germany Programme of Clinical Biomedical Research (01GB 9401); the State of Baden-Wurttemberg through Medical Faculty of the University of Ulm (P.685); the German Cancer Research Center; the Minnesota Ovarian Cancer Alliance; the Mayo Foundation; the Fred C. and Katherine B. Andersen Foundation; the Lon V. Smith Foundation (LVS-39420); the Oak Foundation; Eve Appeal; the OHSU Foundation; the Mermaid I project; the Rudolf-Bartling Foundation; the UK National Institute for Health Research Biomedical Research Centres at the University of Cambridge, Imperial College London, University College Hospital ‘Womens Health Theme’ and the Royal Marsden Hospital; and WorkSafeBC 14. Investigator-specific funding: G.C.P receives scholarship support from the University of Queensland and QIMR Berghofer. Y.L. was supported by the NHMRC Early Career Fellowship. G.C.T. is supported by the National Health and Medical Research Council. S.M. was supported by an ARC Future Fellowship

    Shared genetics underlying epidemiological association between endometriosis and ovarian cancer

    Get PDF
    Epidemiological studies have demonstrated associations between endometriosis and certain histotypes of ovarian cancer, including clear cell, low-grade serous and endometrioid carcinomas. We aimed to determine whether the observed associations might be due to shared genetic aetiology. To address this, we used two endometriosis datasets genotyped on common arrays with full-genome coverage (3194 cases and 7060 controls) and a large ovarian cancer dataset genotyped on the customized Illumina Infinium iSelect (iCOGS) arrays (10 065 cases and 21 663 controls). Previous work has suggested that a large number of genetic variants contribute to endometriosis and ovarian cancer (all histotypes combined) susceptibility. Here, using the iCOGS data, we confirmed polygenic architecture for most histotypes of ovarian cancer. This led us to evaluate if the polygenic effects are shared across diseases. We found evidence for shared genetic risks between endometriosis and all histotypes of ovarian cancer, except for the intestinal mucinous type. Clear cell carcinoma showed the strongest genetic correlation with endometriosis (0.51, 95% CI = 0.18-0.84). Endometrioid and low-grade serous carcinomas had similar correlation coefficients (0.48, 95% CI = 0.07-0.89 and 0.40, 95% CI = 0.05-0.75, respectively). High-grade serous carcinoma, which often arises from the fallopian tubes, showed a weaker genetic correlation with endometriosis (0.25, 95% CI = 0.11-0.39), despite the absence of a known epidemiological association. These results suggest that the epidemiological association between endometriosis and ovarian adenocarcinoma may be attributable to shared genetic susceptibility loci.Other Research Uni

    rs495139 in the TYMS-ENOSF1 Region and Risk of Ovarian Carcinoma of Mucinous Histology.

    Get PDF
    Thymidylate synthase (TYMS) is a crucial enzyme for DNA synthesis. TYMS expression is regulated by its antisense mRNA, ENOSF1. Disrupted regulation may promote uncontrolled DNA synthesis and tumor growth. We sought to replicate our previously reported association between rs495139 in the TYMS-ENOSF1 3' gene region and increased risk of mucinous ovarian carcinoma (MOC) in an independent sample. Genotypes from 24,351 controls to 15,000 women with invasive OC, including 665 MOC, were available. We estimated per-allele odds ratios (OR) and 95% confidence intervals (CI) using unconditional logistic regression, and meta-analysis when combining these data with our previous report. The association between rs495139 and MOC was not significant in the independent sample (OR = 1.09; 95% CI = 0.97⁻1.22; p = 0.15; N = 665 cases). Meta-analysis suggested a weak association (OR = 1.13; 95% CI = 1.03⁻1.24; p = 0.01; N = 1019 cases). No significant association with risk of other OC histologic types was observed (p = 0.05 for tumor heterogeneity). In expression quantitative trait locus (eQTL) analysis, the rs495139 allele was positively associated with ENOSF1 mRNA expression in normal tissues of the gastrointestinal system, particularly esophageal mucosa (r = 0.51, p = 1.7 × 10-28), and nonsignificantly in five MOC tumors. The association results, along with inconclusive tumor eQTL findings, suggest that a true effect of rs495139 might be small

    Common variants at theCHEK2gene locus and risk of epithelial ovarian cancer

    Get PDF
    Genome-wide association studies have identified 20 genomic regions associated with risk of epithelial ovarian cancer (EOC), but many additional risk variants may exist. Here, we evaluated associations between common genetic variants [single nucleotide polymorphisms (SNPs) and indels] in DNA repair genes and EOC risk. We genotyped 2896 common variants at 143 gene loci in DNA samples from 15 397 patients with invasive EOC and controls. We found evidence of associations with EOC risk for variants at FANCA, EXO1, E2F4, E2F2, CREB5 and CHEK2 genes (P ≤ 0.001). The strongest risk association was for CHEK2 SNP rs17507066 with serous EOC (P = 4.74 x 10(-7)). Additional genotyping and imputation of genotypes from the 1000 genomes project identified a slightly more significant association for CHEK2 SNP rs6005807 (r (2) with rs17507066 = 0.84, odds ratio (OR) 1.17, 95% CI 1.11-1.24, P = 1.1×10(-7)). We identified 293 variants in the region with likelihood ratios of less than 1:100 for representing the causal variant. Functional annotation identified 25 candidate SNPs that alter transcription factor binding sites within regulatory elements active in EOC precursor tissues. In The Cancer Genome Atlas dataset, CHEK2 gene expression was significantly higher in primary EOCs compared to normal fallopian tube tissues (P = 3.72×10(-8)). We also identified an association between genotypes of the candidate causal SNP rs12166475 (r (2) = 0.99 with rs6005807) and CHEK2 expression (P = 2.70×10(-8)). These data suggest that common variants at 22q12.1 are associated with risk of serous EOC and CHEK2 as a plausible target susceptibility gene.Other Research Uni
    corecore