36 research outputs found

    Iron deficiency in parkinsonism : region-specific iron dysregulation in Parkinson's disease and multiple system atrophy

    Get PDF
    Alpha synuclein pathology is widespread and found in diverse cell types in multiple system atrophy (MSA) as compared to Parkinson's disease (PD). The reason for this differential distribution is unknown. Regional differences in the distribution of iron are associated with neurodegenerative diseases, and here we characterize the relationship between iron homeostasis proteins and regional concentration, distribution and form of iron in MSA and PD. In PD substantia nigra, tissue iron and expression of the iron export protein ferroportin increased, while the iron storage protein ferritin expression was unchanged. In the basis pontis of MSA cases, increased total iron concentration coupled with a disproportionate increase in ferritin in dysmorphic microglia and a reduction in ferroportin expression. This is supported by isothermal remanent magnetisation evidence consistent with elevated concentrations of ferritin-bound iron in MSA basis pontis. Conventional opinion holds that excess iron is involved in neurodegeneration. Our data support that this may be the case in PD. While region-specific changes in iron are evident in both PD and MSA, the mechanisms of iron dysregulation appear quite distinct, with a failure to export iron from the MSA basis pontis coupling with significant intracellular accumulation of ferritin iron. This pattern also occurs, to a lesser extent, in the MSA putamen. Despite the excess tissue iron, the manner of iron dysregulation in MSA is reminiscent of changes in anemia of chronic disease, and our preliminary data, coupled with the widespread pathology and involvement of multiple cell types, may evidence a deficit in bioavailabile iron

    Outcomes from elective colorectal cancer surgery during the SARS-CoV-2 pandemic

    Get PDF
    This study aimed to describe the change in surgical practice and the impact of SARS-CoV-2 on mortality after surgical resection of colorectal cancer during the initial phases of the SARS-CoV-2 pandemic

    Mammal responses to global changes in human activity vary by trophic group and landscape

    Get PDF
    Wildlife must adapt to human presence to survive in the Anthropocene, so it is critical to understand species responses to humans in different contexts. We used camera trapping as a lens to view mammal responses to changes in human activity during the COVID-19 pandemic. Across 163 species sampled in 102 projects around the world, changes in the amount and timing of animal activity varied widely. Under higher human activity, mammals were less active in undeveloped areas but unexpectedly more active in developed areas while exhibiting greater nocturnality. Carnivores were most sensitive, showing the strongest decreases in activity and greatest increases in nocturnality. Wildlife managers must consider how habituation and uneven sensitivity across species may cause fundamental differences in human–wildlife interactions along gradients of human influence.Peer reviewe

    Obeticholic acid for the treatment of non-alcoholic steatohepatitis: interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial

    Get PDF
    Background Non-alcoholic steatohepatitis (NASH) is a common type of chronic liver disease that can lead to cirrhosis. Obeticholic acid, a farnesoid X receptor agonist, has been shown to improve the histological features of NASH. Here we report results from a planned interim analysis of an ongoing, phase 3 study of obeticholic acid for NASH. Methods In this multicentre, randomised, double-blind, placebo-controlled study, adult patients with definite NASH,non-alcoholic fatty liver disease (NAFLD) activity score of at least 4, and fibrosis stages F2–F3, or F1 with at least oneaccompanying comorbidity, were randomly assigned using an interactive web response system in a 1:1:1 ratio to receive oral placebo, obeticholic acid 10 mg, or obeticholic acid 25 mg daily. Patients were excluded if cirrhosis, other chronic liver disease, elevated alcohol consumption, or confounding conditions were present. The primary endpointsfor the month-18 interim analysis were fibrosis improvement (≥1 stage) with no worsening of NASH, or NASH resolution with no worsening of fibrosis, with the study considered successful if either primary endpoint was met. Primary analyses were done by intention to treat, in patients with fibrosis stage F2–F3 who received at least one dose of treatment and reached, or would have reached, the month 18 visit by the prespecified interim analysis cutoff date. The study also evaluated other histological and biochemical markers of NASH and fibrosis, and safety. This study is ongoing, and registered with ClinicalTrials.gov, NCT02548351, and EudraCT, 20150-025601-6. Findings Between Dec 9, 2015, and Oct 26, 2018, 1968 patients with stage F1–F3 fibrosis were enrolled and received at least one dose of study treatment; 931 patients with stage F2–F3 fibrosis were included in the primary analysis (311 in the placebo group, 312 in the obeticholic acid 10 mg group, and 308 in the obeticholic acid 25 mg group). The fibrosis improvement endpoint was achieved by 37 (12%) patients in the placebo group, 55 (18%) in the obeticholic acid 10 mg group (p=0·045), and 71 (23%) in the obeticholic acid 25 mg group (p=0·0002). The NASH resolution endpoint was not met (25 [8%] patients in the placebo group, 35 [11%] in the obeticholic acid 10 mg group [p=0·18], and 36 [12%] in the obeticholic acid 25 mg group [p=0·13]). In the safety population (1968 patients with fibrosis stages F1–F3), the most common adverse event was pruritus (123 [19%] in the placebo group, 183 [28%] in the obeticholic acid 10 mg group, and 336 [51%] in the obeticholic acid 25 mg group); incidence was generally mild to moderate in severity. The overall safety profile was similar to that in previous studies, and incidence of serious adverse events was similar across treatment groups (75 [11%] patients in the placebo group, 72 [11%] in the obeticholic acid 10 mg group, and 93 [14%] in the obeticholic acid 25 mg group). Interpretation Obeticholic acid 25 mg significantly improved fibrosis and key components of NASH disease activity among patients with NASH. The results from this planned interim analysis show clinically significant histological improvement that is reasonably likely to predict clinical benefit. This study is ongoing to assess clinical outcomes

    Interspecific aggresion between Black Redstart \kur{Phoenicurus ochruros} and Common Redstart \kur{Phoenicurus phoenicurus}: Do only neighbours fight?

    Get PDF
    Background Chemical imaging of the human brain has great potential for diagnostic and monitoring purposes. The heterogeneity of human brain iron distribution, and alterations to this distribution in Alzheimer’s disease, indicate iron as a potential endogenous marker. The influence of iron on certain magnetic resonance imaging (MRI) parameters increases with magnetic field, but is under-explored in human brain tissues above 7 T. New Method Magnetic resonance microscopy at 9.4 T is used to calculate parametric images of chemically-unfixed post-mortem tissue from Alzheimer’s cases (n = 3) and healthy controls (n = 2). Iron-rich regions including caudate nucleus, putamen, globus pallidus and substantia nigra are analysed prior to imaging of total iron distribution with synchrotron X-ray fluorescence mapping. Iron fluorescence calibration is achieved with adjacent tissue blocks, analysed by inductively coupled plasma mass spectrometry or graphite furnace atomic absorption spectroscopy. Results Correlated MR images and fluorescence maps indicate linear dependence of R2, R2* and R2’ on iron at 9.4 T, for both disease and control, as follows: [R2(s−1) = 0.072[Fe] + 20]; [R2*(s−1) = 0.34[Fe] + 37]; [R2’(s−1) = 0.26[Fe] + 16] for Fe in μg/g tissue (wet weight). Comparison with Existing Methods This method permits simultaneous non-destructive imaging of most bioavailable elements. Iron is the focus of the present study as it offers strong scope for clinical evaluation; the approach may be used more widely to evaluate the impact of chemical elements on clinical imaging parameters. Conclusion The results at 9.4 T are in excellent quantitative agreement with predictions from experiments performed at lower magnetic fields

    High field magnetic resonance microscopy of the human hippocampus in Alzheimer's disease : quantitative imaging and correlation with iron

    No full text
    We report R2 and R2* in human hippocampus from five unfixed post-mortem Alzheimer's disease (AD) and three age-matched control cases. Formalin-fixed tissues from opposing hemispheres in a matched AD and control were included for comparison. Imaging was performed in a 600 MHz (14 T) vertical bore magnet at MR microscopy resolution to obtain R2 and R2* (62 μm × 62 μm in-plane, 80 μm slice thickness), and R1 at 250 μm isotropic resolution. R1, R2 and R2* maps were computed for individual slices in each case, and used to compare subfields between AD and controls. The magnitudes of R2 and R2* changed very little between AD and control, but their variances in the Cornu Ammonis and dentate gyrus were significantly higher in AD compared for controls (p < 0.001). To investigate the relationship between tissue iron and MRI parameters, each tissue block was cryosectioned at 30 μm in the imaging plane, and iron distribution was mapped using synchrotron microfocus X-ray fluorescence spectroscopy. A positive correlation of R2 and R2* with iron was demonstrated. While studies with fixed tissues are more straightforward to conduct, fixation can alter iron status in tissues, making measurement of unfixed tissue relevant. To our knowledge, these data represent an advance in quantitative imaging of hippocampal subfields in unfixed tissue, and the methods facilitate direct analysis of the relationship between MRI parameters and iron. The significantly increased variance in AD compared for controls warrants investigation at lower fields and in-vivo, to determine if this parameter is clinically relevant

    Optimisation of AAV-NDI1 Significantly Enhances Its Therapeutic Value for Correcting Retinal Mitochondrial Dysfunction

    No full text
    AAV gene therapy for ocular disease has become a reality with the market authorisation of LuxturnaTM for RPE65-linked inherited retinal degenerations and many AAV gene therapies currently undergoing phase III clinical trials. Many ocular disorders have a mitochondrial involvement from primary mitochondrial disorders such as Leber hereditary optic neuropathy (LHON), predominantly due to mutations in genes encoding subunits of complex I, to Mendelian and multifactorial ocular conditions such as dominant optic atrophy, glaucoma and age-related macular degeneration. In this study, we have optimised the nuclear yeast gene, NADH-quinone oxidoreductase (NDI1), which encodes a single subunit complex I equivalent, creating a candidate gene therapy to improve mitochondrial function, independent of the genetic mutation driving disease. Optimisation of NDI1 (ophNdi1) substantially increased expression in vivo, protected RGCs and increased visual function, as assessed by optokinetic and photonegative response, in a rotenone-induced murine model. In addition, ophNdi1 increased cellular oxidative phosphorylation and ATP production and protected cells from rotenone insult to a significantly greater extent than wild type NDI1. Significantly, ophNdi1 treatment of complex I deficient patient-derived fibroblasts increased oxygen consumption and ATP production rates, demonstrating the potential of ophNdi1 as a candidate therapy for ocular disorders where mitochondrial deficits comprise an important feature

    Concentration of various trace elements in the rat retina and their distribution in different structures

    No full text
    Inductively coupled plasma mass spectrometry (ICP-MS) was used to quantify the total amount of trace elements in retina from adult male Sprague-Dawley rats (n = 6). Concentration of trace elements within individual retinal areas in frozen sections of the fellow eye was established with the use of two methodologies: (1) particle-induced X-ray emission (PIXE) in combination with 3D depth profiling with Rutherford backscattering spectrometry (RBS) and (2) synchrotron X-ray fluorescence (SXRF) microscopy. The most abundant metal in the retina was zinc, followed by iron and copper. Nickel, manganese, chromium, cobalt, selenium and cadmium were present in very small amounts. The PIXE and SXRF analysis yielded a non-homogenous pattern distribution of metals in the retina. Relatively high levels of zinc were found in the inner part of the photoreceptor inner segments (RIS)/outer limiting membrane (OLM), inner nuclear layer and plexiform layers. Iron was found to accumulate in the retinal pigment epithelium/choroid layer and RIS/OLM. Copper in turn, was localised primarily in the RIS/OLM and plexiform layers. The trace elements iron, copper, and zinc exist in different amounts and locations in the rat retina
    corecore