31 research outputs found

    Two closely related ureotelic fish species of the genus Alcolapia express different levels of ammonium transporters in gills

    Get PDF
    Most fish excrete their nitrogenous waste across the gills as ammonia through the activity of the Rhesus glycoprotein ammonium transporters. In contrast, fish of the subgenus Alcolapia (Oreochromis) are the only vertebrates that survive the extreme conditions of the soda lakes of Natron and Magadi in East Africa and have evolved adaptations to the highly alkaline waters including the ability to excrete their nitrogenous waste as urea. Nevertheless, Alcolapia retain the Rhesus glycoprotein genes in their genomes and using two heterologous expression systems, we demonstrate that Alcolapia Rhbg is capable of moving ammonia. Comparing ammonia and urea excretion from two closely related Alcolapia species from the same aquarium, we found that while Alcolapia grahami remains fully ureotelic after many generations in lab conditions, Alcolapia alcalica excretes some of its nitrogenous waste as ammonia. Using in situ hybridisation, we demonstrate robust, localised gene expression of Rhbg, rhcg1 and rhcg2 in the gill tissue in both A. alcalica embryos and adults, similar to that in other ammoniotelic fish. In contrast, the expression of these genes in A. grahami gills is much lower than in A. alcalica, suggesting the rapid evolution of a molecular mechanism underlying the complete ureotelism of A. grahami

    Computational approaches for understanding the diagnosis and treatment of Parkinson's disease

    Get PDF
    This study describes how the application of evolutionary algorithms (EAs) can be used to study motor function in humans with Parkinson’s disease (PD) and in animal models of PD. Human data is obtained using commercially available sensors via a range of non-invasive procedures that follow conventional clinical practice. EAs can then be used to classify human data for a range of uses, including diagnosis and disease monitoring. New results are presented that demonstrate how EAs can also be used to classify fruit flies with and without genetic mutations that cause Parkinson’s by using measurements of the proboscis extension reflex. The case is made for a computational approach that can be applied across human and animal studies of PD and lays the way for evaluation of existing and new drug therapies in a truly objective way

    Characterisation of the Fibroblast Growth Factor Dependent Transcriptome in Early Development

    Get PDF
    BACKGROUND: FGF signaling has multiple roles in regulating processes in animal development, including the specification and patterning of the mesoderm. In addition, FGF signaling supports self renewal of human embryonic stem cells and is required for differentiation of murine embryonic stem cells into a number of lineages. METHODOLOGY/PRINCIPAL FINDINGS: Given the importance of FGF signaling in regulating development and stem cell behaviour, we aimed to identify the transcriptional targets of FGF signalling during early development in the vertebrate model Xenopus laevis. We analysed the effects on gene expression in embryos in which FGF signaling was inhibited by dominant negative FGF receptors. 67 genes positively regulated by FGF signaling and 16 genes negatively regulated by FGF signaling were identified. FGF target genes are expressed in distinct waves during the late blastula to early gastrula phase. Many of these genes are expressed in the early mesoderm and dorsal ectoderm. A widespread requirement for FGF in regulating genes expressed in the Spemann organizer is revealed. The FGF targets MKP1 and DUSP5 are shown to be negative regulators of FGF signaling in early Xenopus tissues. FoxD3 and Lin28, which are involved in regulating pluripotency in ES cells are shown to be down regulated when FGF signaling is blocked. CONCLUSIONS: We have undertaken a detailed analysis of FGF target genes which has generated a robust, well validated data set. We have found a widespread role for FGF signaling in regulating the expression of genes mediating the function of the Spemann organizer. In addition, we have found that the FGF targets MKP1 and DUSP5 are likely to contribute to the complex feedback loops involved in modulating responses to FGF signaling. We also find a link between FGF signaling and the expression of known regulators of pluripotency

    The Presence of Two <i>MyoD</i> Genes in a Subset of Acanthopterygii Fish Is Associated with a Polyserine Insert in MyoD1

    Get PDF
    The MyoD gene was duplicated during the teleost whole genome duplication and, while a second MyoD gene (MyoD2) was subsequently lost from the genomes of some lineages (including zebrafish), many fish lineages (including Alcolapia species) have retained both MyoD paralogues. Here we reveal the expression patterns of the two MyoD genes in Oreochromis (Alcolapia) alcalica using in situ hybridisation. We report our analysis of MyoD1 and MyoD2 protein sequences from 54 teleost species, and show that O. alcalica, along with some other teleosts, include a polyserine repeat between the amino terminal transactivation domains (TAD) and the cysteine-histidine rich region (H/C) in MyoD1. The evolutionary history of MyoD1 and MyoD2 is compared to the presence of this polyserine region using phylogenetics, and its functional relevance is tested using overexpression in a heterologous system to investigate subcellular localisation, stability, and activity of MyoD proteins that include and do not include the polyserine region

    Wnt-dependent osteogenic commitment of bone marrow stromal cells using a novel GSK3β inhibitor

    No full text
    Bone marrow stromal cells (BMSCs, also known as bone marrow-derived mesenchymal stem cells) can differentiate into multiple lineages including osteogenic and adipogenic cells. Wnt signalling has been implicated in controlling BMSC fate, but the mechanisms are unclear and apparently conflicting data exist. Here we show that a novel glycogen synthase kinase 3β inhibitor, AR28, is a potent activator of canonical Wnt signalling using in vitro β-catenin translocation studies and TCF-reporter assays. In vivo, AR28 induced characteristic axis duplication and secondary regions of chordin expression in Xenopus laevis embryos. Using human BMSCs grown in adipogenic medium, we confirmed that AR28-mediated Wnt signalling caused a significant (p < 0.05) dose-dependent reduction of adipogenic markers. In osteogenic media, including dexamethasone, AR28 caused significant (p < 0.05) decreases in alkaline phosphatase (ALP) activity compared to vehicle controls, indicative of a reduced osteogenic response. However, when excluding dexamethasone from the osteogenic media, increases in both ALP and mineralisation were identified following AR28 treatment, which was blocked by mitomycin C. Pre-treatment of BMSCs with AR28 for 7 days before osteogenic induction also increased ALP activity and mineralisation. Furthermore, BMP2-induced osteogenic differentiation was strongly enhanced by AR28 addition within 3 days, but without concomitant changes in cell number, therefore revealing BMP-dependent and independent mechanisms for Wnt-induced osteogenesis

    FGF4 regulates blood and muscle specification in Xenopus laevis

    No full text
    Background information. FGF (fibroblast growth factor) signalling is known to be required for many aspects of mesoderm formation and patterning during Xenopus development and has been implicated in regulating genes required for the specification of both blood and skeletal muscle lineages. Results. In the present study, we have specifically knocked down the expression of FGF4 using AMO (antisense morpholino oligonucleotide)-mediated inhibition and demonstrate that FGF4 acts in the dorsal marginal zone to restrict blood development and promote the development of skeletal muscle. In addition, we used a drug inhibitor of FGF signalling and an inducible form of FGFR1 (FGF receptor 1) to identify a period of competence during late blastula and gastrula stages when FGF signalling acts to regulate blood versus muscle specification. Notably, we found that it is the dorsal activity of FGF that is required to restrict the expression of SCL (stem cell leukaemia) to the ventral blood island. Conclusions. Our data indicate that FGF4 is a key organizer-derived signal involved in the process of dorsoventral patterning of the mesoderm

    Prediabetes Phenotype Influences Improvements in Glucose Homeostasis with Resistance Training

    No full text
    <div><p>Purpose</p><p>To determine if prediabetes phenotype influences improvements in glucose homeostasis with resistance training (RT).</p><p>Methods</p><p>Older, overweight individuals with prediabetes (n = 159; aged 60±5 yrs; BMI 33±4 kg/m<sup>2</sup>) completed a supervised RT program twice per week for 12 weeks. Body weight and composition, strength, fasting plasma glucose, 2-hr oral glucose tolerance, and Matsuda-Defronza estimated insulin sensitivity index (ISI) were assessed before and after the intervention. Participants were categorized according to their baseline prediabetes phenotype as impaired fasting glucose only (IFG) (n = 73), impaired glucose tolerance only (IGT) (n = 21), or combined IFG and IGT (IFG/IGT) (n = 65).</p><p>Results</p><p>Chest press and leg press strength increased 27% and 18%, respectively, following the 12-week RT program (both <i>p</i><0.05). Waist circumference (-1.0%; pre 109.3±10.3 cm, post 108.2±10.6 cm) and body fat (-0.6%; pre 43.7±6.8%, post 43.1±6.8%) declined, and lean body mass (+1.3%; pre 52.0±10.4 kg, post 52.7±10.7 kg) increased following the intervention. Fasting glucose concentrations did not change (<i>p</i>>0.05) following the intervention. However, 2-hr oral glucose tolerance improved in those with IGT (pre 8.94±0.72 mmol/l, post 7.83±1.11 mmol/l, <i>p</i><0.05) and IFG/IGT (pre 9.66±1.11mmol/l, post 8.60±2.00 mmol/l) but not in those with IFG (pre 6.27±1.28mmol/l, post 6.33± 1.55 mmol/l). There were no significant changes in ISI or glucose area under the curve following the RT program.</p><p>Conclusions</p><p>RT without dietary intervention improves 2-hr oral glucose tolerance in individuals with prediabetes. However, the improvements in glucose homeostasis with RT appear limited to those with IGT or combined IFG and IGT.</p><p>Trial Registration</p><p>ClinicalTrials.gov: <a href="https://clinicaltrials.gov/ct2/show/NCT01112709" target="_blank">NCT01112709</a></p></div
    corecore