32 research outputs found

    Quasars as Cosmological Standard Candles

    Get PDF
    We propose the use of quasars with accretion rate near the Eddington ratio (extreme quasars) as standard candles. The selection criteria are based on the Eigenvector 1 (E1) formalism. Our first sample is a selection of 334 optical quasar spectra from the SDSS DR7 database with a S/N > 20. Using the E1, we define primary and secondary selection criteria in the optical spectral range. We show that it is possible to derive a redshift-independent estimate of luminosity for extreme Eddington ratio sources. Our results are consistent with concordance cosmology but we need to work with other spectral ranges to take into account the quasar orientation, among other constrains

    Overload-mediated skeletal muscle hypertrophy is not impaired by loss of myofiber STAT3

    Get PDF
    Although the signal pathways mediating muscle protein synthesis and degradation are well characterized, the transcriptional processes modulating skeletal muscle mass and adaptive growth are poorly understood. Recently, studies in mouse models of muscle wasting or acutely exercised human muscle have suggested a potential role for the transcription factor signal transducer and activator of transcription 3 (STAT3), in adaptive growth. Hence, in the present study we sought to define the contribution of STAT3 to skeletal muscle adaptive growth. In contrast to previous work, two different resistance exercise protocols did not change STAT3 phosphorylation in human skeletal muscle. To directly address the role of STAT3 in load-induced (i.e., adaptive) growth, we studied the anabolic effects of 14 days of synergist ablation (SA) in skeletal muscle-specific STAT3 knockout (mKO) mice and their floxed, wild-type (WT) littermates. Plantaris muscle weight and fiber area in the nonoperated leg (control; CON) was comparable between genotypes. As expected, SA significantly increased plantaris weight, muscle fiber cross-sectional area, and anabolic signaling in WT mice, although interestingly, this induction was not impaired in STAT3 mKO mice. Collectively, these data demonstrate that STAT3 is not required for overload-mediated hypertrophy in mouse skeletal muscle. </jats:p

    Muscle-specific knockout of general control of amino acid synthesis 5 (GCN5) does not enhance basal or endurance exercise-induced mitochondrial adaptation

    Get PDF
    Objective&nbsp; Lysine acetylation is an important post-translational modification that regulates metabolic function in skeletal muscle. The acetyltransferase, general control of amino acid synthesis 5 (GCN5), has been proposed as a regulator of mitochondrial biogenesis via its inhibitory action on peroxisome proliferator activated receptor-&gamma; coactivator-1&alpha; (PGC-1&alpha;). However, the specific contribution of GCN5 to skeletal muscle metabolism and mitochondrial adaptations to endurance exercise in vivo remain to be defined. We aimed to determine whether loss of GCN5 in skeletal muscle enhances mitochondrial density and function, and the adaptive response to endurance exercise training.&nbsp; Methods&nbsp; We used Cre-LoxP methodology to generate mice with muscle-specific knockout of GCN5 (mKO) and floxed, wildtype (WT) littermates. We measured whole-body energy expenditure, as well as markers of mitochondrial density, biogenesis, and function in skeletal muscle from sedentary mice, and mice that performed 20 days of voluntary endurance exercise training.&nbsp; Results&nbsp; Despite successful knockdown of GCN5 activity in skeletal muscle of mKO mice, whole-body energy expenditure as well as skeletal muscle mitochondrial abundance and maximal respiratory capacity were comparable between mKO and WT mice. Further, there were no genotype differences in endurance exercise-mediated mitochondrial biogenesis or increases in PGC-1&alpha; protein content.&nbsp; Conclusion&nbsp; These results demonstrate that loss of GCN5 in vivo does not promote metabolic remodeling in mouse skeletal muscle

    Abstracts from the Food Allergy and Anaphylaxis Meeting 2016

    Get PDF

    Cell populations and muscle fiber morphology associated with acute and chronic muscle degeneration in lumbar spine pathology

    No full text
    Many chronic musculoskeletal conditions are associated with loss of muscle volume and quality, resulting in functional decline. While atrophy has long been implicated as the mechanism of muscle loss in these conditions, recent evidence has emerged demonstrating a degenerative phenotype of muscle loss consisting of disrupted muscle fiber membranes, infiltration of cells into muscle fibers, and as previously describer, possible replacement of muscle fibers by adipose tissue. Here, we use human lumbar spine pathology as a model system to provide a more comprehensive analysis of the morphological features of this mode of muscle loss between early and late stages of disease, including an analysis of the cell populations found in paraspinal muscle biopsies from humans with acute vs chronic lumbar spine pathology. Using longitudinal sections, we show that degeneration of muscle fibers is localized within a fiber (ie, focal), and is characterized by discontinuous or ragged membrane disruption, cellular infiltration, and apparently vacant space containing limited numbers of nuclei and hyper-contractile cell debris. Samples from patients with acute and chronic pathology demonstrate similar magnitudes of muscle degeneration, however, larger proportions of PDGFRβ-positive progenitor cells and leukocytes were observed in the acute group, with no differences in myogenic cells, macrophages, or T-cells. By better understanding the cell population behaviors over the course of disease, therapies can be optimized to address the appropriate targets and timing of administration to minimize the functional consequences of muscle degeneration in lumbar spine pathology

    Spatial transcriptomics tools allow for regional exploration of heterogeneous muscle pathology in the pre-clinical rabbit model of rotator cuff tear

    No full text
    BackgroundConditions affecting skeletal muscle, such as chronic rotator cuff tears, low back pain, dystrophies, and many others, often share changes in muscle phenotype: intramuscular adipose and fibrotic tissue increase while contractile tissue is lost. The underlying changes in cell populations and cell ratios observed with these phenotypic changes complicate the interpretation of tissue-level transcriptional data. Novel single-cell transcriptomics has limited capacity to address this problem because muscle fibers are too long to be engulfed in single-cell droplets and single nuclei transcriptomics are complicated by muscle fibers' multinucleation. Therefore, the goal of this project was to evaluate the potential and challenges of a spatial transcriptomics technology to add dimensionality to transcriptional data in an attempt to better understand regional cellular activity in heterogeneous skeletal muscle tissue.MethodsThe 3' Visium spatial transcriptomics technology was applied to muscle tissue of a rabbit model of rotator cuff tear. Healthy control and tissue collected at 2 and 16&nbsp;weeks after tenotomy was utilized and freshly snap frozen tissue was compared with tissue stored for over 6&nbsp;years to evaluate whether this technology is retrospectively useful in previously acquired tissues. Transcriptional information was overlayed with standard hematoxylin and eosin (H&amp;E) stains of the exact same histological sections.ResultsSequencing saturation and number of genes detected was not affected by sample storage duration. Unbiased clustering matched the underlying tissue type-based on H&amp;E assessment. Connective-tissue-rich areas presented with lower unique molecular identifier counts are compared with muscle fibers even though tissue permeabilization was standardized across the section. A qualitative analysis of resulting datasets revealed heterogeneous fiber degeneration-regeneration after tenotomy based on (neonatal) myosin heavy chain 8 detection and associated differentially expressed gene analysis.ConclusionsThis protocol can be used in skeletal muscle to explore spatial transcriptional patterns and confidently relate them to the underlying histology, even for tissues that have been stored for up to 6&nbsp;years. Using this protocol, there is potential for novel transcriptional pathway discovery in longitudinal studies since the transcriptional information is unbiased by muscle composition and cell type changes
    corecore