75 research outputs found

    Consensus in Guidelines for Evaluation of DSD by the Texas Children's Hospital Multidisciplinary Gender Medicine Team

    Get PDF
    The Gender Medicine Team (GMT), comprised of members with expertise in endocrinology, ethics, genetics, gynecology, pediatric surgery, psychology, and urology, at Texas Children's Hospital and Baylor College of Medicine formed a task force to formulate a consensus statement on practice guidelines for managing disorders of sexual differentiation (DSD) and for making sex assignments. The GMT task force reviewed published evidence and incorporated findings from clinical experience. Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) was used to assess the quality of evidence presented in the literature for establishing evidence-based guidelines. The task force presents a consensus statement regarding specific diagnostic and therapeutic issues in the management of individuals who present with DSD. The consensus statement includes recommendations for (1) laboratory workup, (2) acute management, (3) sex assignment in an ethical framework that includes education and involvement of the parents, and (4) surgical management

    Isolation and Genetic Characterization of Rift Valley fever virus from Aedes vexans arabiensis, Kingdom of Saudi Arabia

    Get PDF
    An outbreak of Rift Valley fever in the Kingdom of Saudi Arabia and Yemen in 2000 was the first recognized occurrence of the illness outside of Africa and Madagascar. An assessment of potential mosquito vectors in the region yielded an isolate from Aedes vexans arabiensis, most closely related to strains from Madagascar (1991) and Kenya (1997)

    Transmission of West Nile Virus by Culex quinquefasciatus Say Infected with Culex Flavivirus Izabal

    Get PDF
    Unlike most known flaviviruses (Family, Flaviviridae: Genus, Flavivirus), insect-only flaviviruses are a unique group of flaviviruses that only infect invertebrates. The study of insect-only flaviviruses has increased in recent years due to the discovery and characterization of numerous novel flaviviruses from a diversity of mosquito species around the world. The widespread discovery of these viruses has prompted questions regarding flavivirus evolution and the potential impact of these viruses on the transmission of flaviviruses of public health importance such as WNV. Therefore, we tested the effect of Culex flavivirus Izabal (CxFV Izabal), an insect-only flavivirus isolated from Culex quinquefasciatus mosquitoes in Guatemala, on the growth and transmission of a strain of WNV isolated concurrently from the same mosquito species and location. Prior infection of C6/36 (Aedes albopictus mosquito) cells or Cx. quinquefasciatus with CxFV Izabal did not alter the replication kinetics of WNV, nor did it significantly affect WNV infection, dissemination, or transmission rates in two different colonies of mosquitoes that were fed blood meals containing varying concentrations of WNV. These data demonstrate that CxFV probably does not have a significant effect on WNV transmission efficiency in nature

    Discovery and Characterization of Bukakata orbivirus (\u3ci\u3eReoviridae:Orbivirus\u3c/i\u3e), a Novel Virus from a Ugandan Bat

    Get PDF
    While serological and virological evidence documents the exposure of bats to medically important arboviruses, their role as reservoirs or amplifying hosts is less well-characterized. We describe a novel orbivirus (Reoviridae:Orbivirus) isolated from an Egyptian fruit bat (Rousettus aegyptiacus leachii) trapped in 2013 in Uganda and named Bukakata orbivirus. This is the fifth orbivirus isolated from a bat, however genetic information had previously only been available for one bat-associated orbivirus. We performed whole-genome sequencing on Bukakata orbivirus and three other bat-associated orbiviruses (Fomede, Ife, and Japanaut) to assess their phylogenetic relationship within the genus Orbivirus and develop hypotheses regarding potential arthropod vectors. Replication kinetics were assessed for Bukakata orbivirus in three different vertebrate cell lines. Lastly, qRT-PCR and nested PCR were used to determine the prevalence of Bukakata orbivirus RNA in archived samples from three populations of Egyptian fruit bats and one population of cave-associated soft ticks in Uganda. Complete coding sequences were obtained for all ten segments of Fomede, Ife, and Japanaut orbiviruses and for nine of the ten segments for Bukakata orbivirus. Phylogenetic analysis placed Bukakata and Fomede in the tick-borne orbivirus clade and Ife and Japanaut within the Culicoides/phlebotomine sandfly orbivirus clade. Further, Bukakata and Fomede appear to be serotypes of the Chobar Gorge virus species. Bukakata orbivirus replicated to high titers (106–107 PFU/mL) in Vero, BHK-21 [C-13], and R06E (Egyptian fruit bat) cells. Preliminary screening of archived bat and tick samples do not support Bukakata orbivirus presence in these collections, however additional testing is warranted given the phylogenetic associations observed. This study provided complete coding sequence for several bat-associated orbiviruses and in vitro characterization of a bat-associated orbivirus. Our results indicate that bats may play an important role in the epidemiology of viruses in the genus Orbivirus and further investigation is warranted into vector-host associations and ongoing surveillance efforts

    Exposure of Egyptian Rousette Bats (\u3ci\u3eRousettus aegyptiacus\u3c/i\u3e) and a Little Free-Tailed Bat (\u3ci\u3eChaerephon pumilus\u3c/i\u3e) to Alphaviruses in Uganda

    Get PDF
    The reservoir for zoonotic o’nyong-nyong virus (ONNV) has remained unknown since this virus was first recognized in Uganda in 1959. Building on existing evidence for mosquito bloodfeeding on various frugivorous bat species in Uganda, and seroprevalence for arboviruses among bats in Uganda, we sought to assess if serum samples collected from bats in Uganda demonstrated evidence of exposure to ONNV or the closely related zoonotic chikungunya virus (CHIKV). In total, 652 serum samples collected from six bat species were tested by plaque reduction neutralization test (PRNT) for neutralizing antibodies against ONNV and CHIKV. Forty out of 303 (13.2%) Egyptian rousettes from Maramagambo Forest and 1/13 (8%) little free-tailed bats from Banga Nakiwogo, Entebbe contained neutralizing antibodies against ONNV. In addition, 2/303 (0.7%) of these Egyptian rousettes contained neutralizing antibodies to CHIKV, and 8/303 (2.6%) contained neutralizing antibodies that were nonspecifically reactive to alphaviruses. These data support the interepidemic circulation of ONNV and CHIKV in Uganda, although Egyptian rousette bats are unlikely to serve as reservoirs for these viruses given the inconsistent occurrence of antibody-positive bats

    Discovery and Characterization of Bukakata orbivirus (\u3ci\u3eReoviridae:Orbivirus\u3c/i\u3e), a Novel Virus from a Ugandan Bat

    Get PDF
    While serological and virological evidence documents the exposure of bats to medically important arboviruses, their role as reservoirs or amplifying hosts is less well-characterized. We describe a novel orbivirus (Reoviridae:Orbivirus) isolated from an Egyptian fruit bat (Rousettus aegyptiacus leachii) trapped in 2013 in Uganda and named Bukakata orbivirus. This is the fifth orbivirus isolated from a bat, however genetic information had previously only been available for one bat-associated orbivirus. We performed whole-genome sequencing on Bukakata orbivirus and three other bat-associated orbiviruses (Fomede, Ife, and Japanaut) to assess their phylogenetic relationship within the genus Orbivirus and develop hypotheses regarding potential arthropod vectors. Replication kinetics were assessed for Bukakata orbivirus in three different vertebrate cell lines. Lastly, qRT-PCR and nested PCR were used to determine the prevalence of Bukakata orbivirus RNA in archived samples from three populations of Egyptian fruit bats and one population of cave-associated soft ticks in Uganda. Complete coding sequences were obtained for all ten segments of Fomede, Ife, and Japanaut orbiviruses and for nine of the ten segments for Bukakata orbivirus. Phylogenetic analysis placed Bukakata and Fomede in the tick-borne orbivirus clade and Ife and Japanaut within the Culicoides/phlebotomine sandfly orbivirus clade. Further, Bukakata and Fomede appear to be serotypes of the Chobar Gorge virus species. Bukakata orbivirus replicated to high titers (106–107 PFU/mL) in Vero, BHK-21 [C-13], and R06E (Egyptian fruit bat) cells. Preliminary screening of archived bat and tick samples do not support Bukakata orbivirus presence in these collections, however additional testing is warranted given the phylogenetic associations observed. This study provided complete coding sequence for several bat-associated orbiviruses and in vitro characterization of a bat-associated orbivirus. Our results indicate that bats may play an important role in the epidemiology of viruses in the genus Orbivirus and further investigation is warranted into vector-host associations and ongoing surveillance efforts

    Calcium Dependent CAMTA1 in Adult Stem Cell Commitment to a Myocardial Lineage

    Get PDF
    The phenotype of somatic cells has recently been found to be reversible. Direct reprogramming of one cell type into another has been achieved with transduction and over expression of exogenous defined transcription factors emphasizing their role in specifying cell fate. To discover early and novel endogenous transcription factors that may have a role in adult-derived stem cell acquisition of a cardiomyocyte phenotype, mesenchymal stem cells from human and mouse bone marrow and rat liver were co-cultured with neonatal cardiomyocytes as an in vitro cardiogenic microenvironment. Cell-cell communications develop between the two cell types as early as 24 hrs in co-culture and are required for elaboration of a myocardial phenotype in the stem cells 8-16 days later. These intercellular communications are associated with novel Ca(2+) oscillations in the stem cells that are synchronous with the Ca(2+) transients in adjacent cardiomyocytes and are detected in the stem cells as early as 24-48 hrs in co-culture. Early and significant up-regulation of Ca(2+)-dependent effectors, CAMTA1 and RCAN1 ensues before a myocardial program is activated. CAMTA1 loss-of-function minimizes the activation of the cardiac gene program in the stem cells. While the expression of RCAN1 suggests involvement of the well-characterized calcineurin-NFAT pathway as a response to a Ca(2+) signal, the CAMTA1 up-regulated expression as a response to such a signal in the stem cells was unknown. Cell-cell communications between the stem cells and adjacent cardiomyocytes induce Ca(2+) signals that activate a myocardial gene program in the stem cells via a novel and early Ca(2+)-dependent intermediate, up-regulation of CAMTA1

    Infection and Transmission of Rift Valley Fever Viruses Lacking the NSs and/or NSm Genes in Mosquitoes: Potential Role for NSm in Mosquito Infection

    Get PDF
    Rift Valley fever virus is transmitted mainly by mosquitoes and causes disease in humans and animals throughout Africa and the Arabian Peninsula. The impact of disease is large in terms of human illness and mortality, and economic impact on the livestock industry. For these reasons, and because there is a risk of this virus spreading to Europe and North America, it is important to develop a vaccine that is stable, safe and effective in preventing infection. Potential vaccine viruses have been developed through deletion of two genes (NSs and NSm) affecting virus virulence. Because this virus is normally transmitted by mosquitoes we must determine the effects of the deletions in these vaccine viruses on their ability to infect and be transmitted by mosquitoes. An optimal vaccine virus would not infect or be transmitted. The viruses were tested in two mosquito species: Aedes aegypti and Culex quinquefasciatus. Deletion of the NSm gene reduced infection of Ae. aegypti mosquitoes indicating a role for the NSm protein in mosquito infection. The virus with deletion of both NSs and NSm genes was the best vaccine candidate since it did not infect Ae. aegypti and showed reduced infection and transmission rates in Cx. quinquefasciatus
    • …
    corecore