8 research outputs found

    Sinteza, in vitro antitumorsko ispitivanje i radiosenzitirajuće vrednovanje novih derivata 4-[3-(supstituiranih)tioureido]-N-(kinoksalin-2-il)benzensulfonamida

    Get PDF
    Sulfonamides and quinoxaline derivatives possess many types of biological activities and have been recently reported to show substantial antitumor activity. This paper reports the synthesis of novel thioureidosulfaquinoxaline derivatives. All the newly synthesized compounds were evaluated for their in vitro anticancer activity against a human liver cell line (HEPG2) and showed higher activity than the reference drug doxorubicin. 4-(3-(4-Ethylbenzoate)thioureido)-N-(quinoxalin-2-yl)benzenesulfonamide (9) (IC50 = 15.6 µmol L1), N-(pyridin-2-yl)-4-(3-(4-(N-quinoxalin-2-yl-sulfamoyl)phenyl)thioureido)benzene-sulfonamide (10) (IC50 = 26.8 µmol L1) and N-(quinoxalin-2-yl)-4-(3-(4-(N-thiazol-2-ylsulfamoyl)phenyl)thioureido)benzenesulfonamide (11) (IC50 = 24.4 µmol L1) were the most potent compared to doxorubicin (IC50 = 71.8 µmol L1). The most potent compounds 9, 10 and 11 were evaluated as radiosensitizing agents by subjecting the compounds to γ-irradiation (8 kGy).Derivati sulfonamida i kinoksalina imaju raznoliko biološko djelovanje, između ostalog i antitumorsko djelovanje. U radu je opisana sinteza novih derivata tioureido sulfakinoksalina. Svim novim spojevima ispitano je antitumorsko djelovanje in vitro na humanoj staničnoj liniji jetre (HEPG 2). Svi ispitani spojevi pokazuju jači učinak nego referentni lijek doksorubicin. Najjači učinak imali su 4-(3-(4-etilbenzoat)tioureido)-N-(kinoksalin-2-il)benzen-sulfonamid (9) (IC50 = 15,6 µmol L1), N-(piridin-2-il)-4-(3-(4-(N-kinoksalin-2-il-sulfamoil)fenil)tioureido)-benzen-sulfonamid (10) (IC50 = 26,8 µmol L1) i N-(kinoksalin-2-il)-4-(3-(4-(N-tiazol-2-ilsulfamoil)fenil)tioureido)benzen-sulfonamid (11) (IC50 = 24,4 µmol L1), dok je IC50 vrijednost bila 71,8 µmol L1. Najaktivniji spojevi 9, 10 i 11 evaluirani su kao radziosenzitirajuća sredstva nakon izlaganja spojeva γ-zračenju (8 kGy)

    Synthesis, Characterization and Anti-Breast Cancer Activity of New 4-Aminoantipyrine-Based Heterocycles

    No full text
    4-Aminoantipyrine was utilized as key intermediate for the synthesis of pyrazolone derivatives bearing biologically active moieties. The newly synthesized compounds were characterized by IR, 1H- and 13C-NMR spectral and microanalytical studies. The compounds were screened as anticancer agents against a human tumor breast cancer cell line MCF7, and the results showed that (Z)-4-((3-amino-5-imino-1-phenyl-1H-pyrazol-4(5H)-ylidene)methylamino)-1,5-dimethyl-2-phenyl-1,2-dihydropyrazol-3-one 5, 3-(4-bromophenyl) -1-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)-4-oxo-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carbonitrile 13, 1-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)-3-(4-iodophenyl)-4-oxo-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carbonitrile 14, 3,3′-(4,4′-sulfonylbis(4,1-phenylene))bis(1-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)-4-oxo-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carbonitrile) 16, (Z)-1- (1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)-2-hydrazono-4-oxo-3-phenyl-1,2,3,4-tetrahydropyrimidine-5-carbonitrile 17, (Z)-1-(1,5-dimethyl-3-oxo-2-phenyl- 2,3-dihydro-1H-pyrazol-4-yl)-4-oxo-3-phenyl-2-(2-phenylhydrazono)-1,2,3,4-tetrahydro pyrimidine-5-carbonitrile 18, and (Z)-4-(3-amino-6-hydrazono-7-phenyl-6,7-dihydro pyrazolo[3,4-d]pyrimidin-5-yl)-1,5-dimethyl-2-phenyl-1,2-dihydropyrazol-3-one 19 were the most active compounds with IC50 values ranging from 30.68 to 60.72 µM compared with Doxorubicin as positive control with the IC50 value 71.8 µM

    Synthesis and Anti-Breast Cancer Evaluation of Novel N-(Guanidinyl)benzenesulfonamides

    No full text
    A series of 4-(substituted)-N-(guanidinyl)benzenesulfonamides bearing biologically active pyrazole, pyrimidine and pyridine moieties were prepared and evaluated for their anticancer activity against human tumor breast cell line (MCF7). These sulfonamides showed promising activity with IC50 values ranging from 49.5 to 70.2 μM. The structure-activity relationship of the synthesized compounds was studied. Interestingly, it was found that the most potent compounds in this study were the corresponding 2-cyanoacrylate 3, 3-oxobutanoate 4, pyrazole 6, pyridine 9 and pyrazole 13. Compounds 7 and 8 are nearly as active as Doxorubicin as reference drug with (IC50 values = 70.2, 68.1 μM), while compounds 5, 10 and 11 exhibited a moderate activity
    corecore