
                                                              

University of Dundee

Synthesis and biological evaluation of novel 2-phenylquinazoline-4-amine derivatives

Ghorab, Mostafa M.; Alsaid, Mansour S.; El-Gazzar, Marwa G.; Higgins, Maureen; Dinkova-
Kostova, Albena; Shahat, Abdelaaty A.
Published in:
Journal of Enzyme Inhibition and Medicinal Chemistry

DOI:
10.3109/14756366.2016.1163343

Publication date:
2016

Document Version
Accepted author manuscript

Link to publication in Discovery Research Portal

Citation for published version (APA):
Ghorab, M. M., Alsaid, M. S., El-Gazzar, M. G., Higgins, M., Dinkova-Kostova, A. T., & Shahat, A. A. (2016).
Synthesis and biological evaluation of novel 2-phenylquinazoline-4-amine derivatives: identification of 6-phenyl-
8H-benzo[g]quinazolino[4,3-b]quinazolin-8-one as a highly potent inducer of NAD(P)H quinone oxidoreductase
1. Journal of Enzyme Inhibition and Medicinal Chemistry, 31(Suppl. 1), 34-49. DOI:
10.3109/14756366.2016.1163343

General rights
Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other
copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

 • Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain.
 • You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 28. Apr. 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Dundee Online Publications

https://core.ac.uk/display/42552598?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.3109/14756366.2016.1163343
http://discovery.dundee.ac.uk/portal/en/research/synthesis-and-biological-evaluation-of-novel-2phenylquinazoline4amine-derivatives(881871b4-9e2f-40e3-821a-6d75e257e2fb).html


1 
 

Synthesis and biological evaluation of novel 2-phenylquinazoline-4-

amine derivatives: Identification of 6-phenyl-8H-

benzo[g]quinazolino[4,3-b]quinazolin-8-one as a highly potent inducer 

of NAD(P)H quinone oxidoreductase 1 

 

Mostafa M. Ghorab1,2*, Mansour S. Alsaid1, Marwa G. El-Gazzar2, Maureen Higgins3, 

Albena T. Dinkova-Kostova3,4, Abdelaaty A. Shahat1,5 

 

1Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Kingdom 

of Saudi Arabia. 
2Drug Radiation Research Department, National Center for Radiation Research & Technology (NCRRT), Egyptian 

Atomic Energy Authority (EAEA), Nasr City, Cairo, Egypt. 
3Jacqui Wood Cancer Centre, Division of Cancer Research, Medical Research Institute, University of Dundee, Dundee 

DD1 9SY, United Kingdom. 
4Departments of Medicine and Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 

Baltimore, MD 21205, USA. 
5Phytochemistry Department, National Research Centre, 33 El Bohouth st. (former El Tahrir st.) Dokki, Giza, Egypt, P. 

O. 12622.  

 

Abstract 

A novel series of quinazoline compounds (2-14) incorporating biologically active 

heterocyclic moieties were designed and synthesized. The structure of the newly 

synthesized compounds was recognized on the basis of elemental analyses, IR, 1H-NMR, 

13C-NMR and mass spectral data. All compounds were evaluated for their ability to 

induce the cytoprotective enzyme NAD(P)H:quinone oxidoreductase 1 (NQO1) using a 

quantitative bioassay and a docking study was performed in the Kelch domain of Keap1 

obtained from the Protein Data Bank (PDB ID: 4IQK) to explore the ability of the 

synthesized compounds to block the Nrf2-binding site of Keap1 . All of the synthesized 

compounds showed concentration-dependent inducer activity with potencies in the low- 

or sub-micromolar range. Compound 12 was the most potent inducer in this new series, 

with a concentration that doubles the specific activity of NQO1 (CD value) of 70 nM. 

The identification of this compound offers a new chemical scaffold for future 

development of highly potent inducers.  
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Introduction 

NAD(P)H:quinone oxidoreductase 1 (NQO1) is a cytosolic enzyme that catalyses the 

obligatory two-electron reduction of many endogenous and environmental quinones 

using flavin adenine dinucleotide (FAD) as a cofactor 1-3. It is a homodimer and is 

biochemically distinguished by its prominent ability to use either NADH or NADPH as 

hydride donors, and by its inhibition by the anticoagulant dicumarol 4.  

 

NQO1 is generally considered as a detoxification enzyme due to its ability to metabolize 

reactive quinones and quinone imines to their less reactive and less toxic hydroquinone 

forms. NQO1 is a substantially inducible enzyme that is expressed in many tissues, and 

its expression is regulated by the antioxidant response element (ARE) both in basal and 

oxidative stress conditions 5. The gene encoding NQO1 contains ARE sequence in the 

promoter region and is known to be regulated by NF-E2 p45-related factor 2 (Nrf2, gene 

name Nfe2l2) 6. Nrf2 belongs to the basic leucine zipper transcription factor family, a 

member of the Cap ’n’ Collar family of transcription factors that binds to the ARE 

leading to induction of many cytoprotective and antioxidant genes. Under basal 

conditions, Nrf2 is continuously targeted for ubiquitination and proteasomal degradation, 

which is primarily mediated by Kelch-like ECH-associated protein 1 (Keap1), a Cullin-

3/Rbx1 ubiquitin ligase substrate adaptor protein 7, 8. Keap1 has specific highly reactive 

cysteine residues which serve as sensors for small molecule oxidants and electrophiles 9, 

10, resulting in inactivation of the substrate adaptor activity of Keap1, and consequently to 

Nrf2 stabilization, which then binds to the ARE (as a heterodimer with a small Maf 

transcription factor) and regulates expression and induction of its target genes, including 

NQO1 11. Indeed, Nrf2 knockout cells and animals exhibit reduction in the constitutive 

expression of NQO1 and impaired induction 5. NQO1 gene expression is induced 

together with other detoxifying enzyme genes in response to antioxidants, xenobiotics, 

electrophiles, heavy metals, and radiation 12. Upon entering cells, these inducers can 

directly scavenge free radicals and can also provoke electrophilic stress signals that 

trigger proteins linked to diverse cellular signaling pathways 6-11, 12. Evidence for the 

significance of the antioxidant functions of NQO1 in suppression of oxidative stress is 

provided by manifestations that induction of NQO1 levels or its reduction are associated 

with reduced and raised susceptibilities to oxidative stress, respectively 6-11, 12.  

 

Quinazolines are excellent reservoir of bioactive substances. A number of biological 

activities 13-17 are associated with quinazolines especially antioxidant activity 18. 

The stability of the quinazoline nucleus has inspired medicinal chemists to introduce 

many bioactive moieties to this nucleus to synthesize new potential medicinal agents.  

In the present study, and in continuation of our research programme aiming to synthesize 

biologically active heterocycles 18-20 particularly quinazoline derivatives 21, 22 several 

amino nitrogenous heterocyclic moieties have been incorporated at position -4- of the 

quinazoline to develop novel series 4- amino-substituted-quinazoline derivatives that are 

likely to have superior cytoprotective activity. In addition, a docking study was 
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performed in the Kelch domain of Keap1 obtained from the Protein Data Bank (PDB ID: 

4IQK) to explore the ability of the synthesized compounds to block the Nrf2-binding site 

of Keap1 

 
 

Materials and Methods 

Melting points (uncorrected) were determined in open capillary on a Gallen Kamp 

melting point apparatus (Sanyo Gallen Kamp, Southborough, UK). Precoated silica gel 

plates (Kieselgel 0.25 mm, 60 F254, Merck, Darmstadt, Germany) were used for thin 

layer chromatography. A developing solvent system of chloroform/methanol (8:2) was 

used and the spots were detected by ultraviolet light. IR spectra (KBr disc) were recorded 

using an FT-IR spectrometer (Perkin Elmer, Norwalk, CT, USA). 1H-NMR spectra were 

scanned on a NMR spectrometer (Bruker AXS Inc., Flawil, Switzerland), operating at 

500 MHz for 1H- and 125.76 MHz for 13C. Chemical shifts are expressed in δ-values 

(ppm) relative to TMS as an internal standard, using DMSO-d6 as a solvent. Mass spectra 

were recorded on a 600 GC/MS (Clarus, Middletown, CT, USA) and TQ 320 

GC/MS/MS mass spectrometers (Varian, West Sussex, UK). Elemental analyses were 

done on a model 2400 CHNSO analyser (Perkin Elmer, Norwalk, CT, USA). All values 

were within ± 0.4 % of the theoretical values. All reagents used were of AR grade. The 

starting material 4-chloro-2-phenylquinazoline 1 was purchased from Sigma (St. Louis, 

MO, USA) and was directly used for the preparation of target compounds. 

Chemistry 

General Procedure 

Synthesis of aminoquinazoline derivatives (2-14). 

A mixture of 1 (2.41 gm, 0.01 mole) and required amines (0.01 mole) in dry 

dimethylformamide (20 mL) was heated under reflux for 24 h, then left to cool. The solid 

product formed was collected by filtration and recrystallized from dioxane to give 

compounds 2-15, respectively.  

2-Phenyl-N-(pyridine-2-yl)quinazolin-4-amine (2).  

Yield, 86%; m.p.>360oC. IR (KBr, cm-1): 3411 (NH), 3057 (CH arom.), 1618 (C=N). 1H- 

NMR (DMSO-d6): 7.5-8.3 [m, 13H, Ar-H], 12.5 [s, 1H, NH, exchangeable with D2O]. 
13C- NMR (DMSO-d6): 102.6, 117.0 (2), 126.3, 127.9 (2), 128.2, 129.0 (2), 131.6 (2), 

133.1, 135.0, 147.6 (2), 153.7, 160.7 (2).  MS m/z (%):  298 (M+) (10.43), 221 (100). 

Anal. Calcd. For C19H14N4(298.12): C, 76.49; H, 4.73; N, 18.78. Found: C, 76.18; H, 

4.45; N, 18.50. 

2-Phenyl-N-(pyridine-4-yl) quinazolin-4-amine (3)23.  
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N-(2-chloropyridin-3-yl) -2-phenylquinazolin-4-amine (4).  

Yield, 86%; m.p. 243.2oC. IR (KBr, cm-1): 3414 (NH), 3058 (CH arom.), 1601 (C=N), 

696 (C-Cl).1H- NMR (DMSO-d6): 7.3-8.2 [m, 12H, Ar-H], 12.5 [s, 1H, NH, 

exchangeable with D2O]. 13C- NMR (DMSO-d6): 117.2, 121.4 (2), 126.3, 127.0 (2), 

127.9, 128.2, 129.0 (2), 131.8 (2), 133.1 (2), 135.0, 152.8 (2), 162.7 (2). MS m/z (%):  

333 (M+) (17.35), 295 (100). Anal. Calcd. For C19H13ClN4 (333.08): C, 68.57; H, 3.94; N, 

16.84. Found: C, 68.26; H, 3.66; N, 17.09. 

N-(5-chloropyridin-2-yl) -2-phenylquinazolin-4-amine (5).  

Yield, 91%; m.p. 108.9oC. IR (KBr, cm-1): 3299 (NH), 3058 (CH arom.), 1623 (C=N), 

826 (C-Cl).1H- NMR (DMSO-d6): 6.5-8.5 [m, 12H, Ar-H], 12.5 [s, 1H, NH, 

exchangeable with D2O]. 13C- NMR (DMSO-d6): 109.9, 115.3, 121.4, 125.3, 126.8 (2), 

127.0, 127.8, 128.6 (2), 131.2, 133.1, 135.0, 137.3, 145.5, 152.8, 158.8, 162.7, 163.4. MS 

m/z (%):  333 (M+) (8.48), 205 (100). Anal. Calcd. For C19H13ClN4 (333.08): C, 68.57; H, 

3.94; N, 16.84. Found: C, 68.19; H, 3.62; N, 16.49. 

2-Phenyl-N-(pyrimidin-2-yl) quinazolin-4-amine (6).  

Yield, 81%; m.p. 98.6oC. IR (KBr, cm-1): 3413 (NH), 3060 (CH arom.), 1615 (C=N). 1H- 

NMR (DMSO-d6): 7.0-8.4 [m, 12H, Ar-H], 11.1 [s, 1H, NH, exchangeable with D2O]. 
13C- NMR (DMSO-d6): 114.7 (2), 114.6, 115.8, 124.1, 125.7 (2), 126.4, 127.8, 128.7 (2), 

129.7, 131.2, 131.9, 150.6, 156.4 (2), 161.3, 161.9, 170.6. MS m/z (%):  299 (M+) 

(11.63), 204 (100). Anal. Calcd. For C18H13N5(299): C, 72.23; H, 4.38; N, 23.40. Found: 

C, 72.57; H, 4.07; N, 23.18. 

N-(4,6-dimethylpyrimidin 2-yl) -2-phenylquinazolin-4-amine (7).  

Yield, 69%; m.p. 70.1oC. IR (KBr, cm-1): 3413 (NH), 3063 (CH arom.), 2957, 2876, 

2805 (CH aliph.), 1615 (C=N). 1H- NMR (DMSO-d6): 2.5 [s, 6H, 2CH3], 7.3-8.5 [m, 

10H, Ar-H], 12.5 [s, 1H, NH, exchangeable with D2O]. 13C- NMR (DMSO-d6): 23.9 (2), 

114.8 (2), 124.8, 126.5 (2), 128.2, 128.3, 129.5 (2), 130.5, 132.8, 138.8, 152.7, 158.3 (2), 

163.2 (3). MS m/z (%):  327.15 (M+) (3.42), 251 (100). Anal. Calcd. For 

C20H17N5(327.15): C, 73.37; H, 5.23; N, 21.39. Found: C, 73.61; H, 4.87; N, 21.07. 

1, 3-Dimethyl-6-( 2-phenylquinazolin-4-ylamino) pyrimidine- 2,4(1H,3H)dione  (8).  

Yield, 77%; m.p. 343.8oC. IR (KBr, cm-1): 3404 (NH), 3100 (CH arom.), 2928, 2836 (CH 

aliph.), 1711, 1675 (2C=O),1608 (C=N). 1H- NMR (DMSO-d6): 3.2, 33 [2s, 6H, 2N-

CH3], 7.0 [s, 1H, CH pyrimidine], 7.4- 8.4 [m, 10H, Ar-H], 9.0 [s, 1H, NH, exchangeable 

with D2O]. 13C- NMR (DMSO-d6): 28.0, 29.9, 86.2, 114.7, 124.2, 126.5 (2), 127.0, 128.1, 
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128.6 (2), 129.0, 131.8, 132.7, 150.8, 151.3, 160.7, 163.2, 163.8, 165.5. MS m/z (%):  

359 (M+) (5.39), 219 (100). Anal. Calcd. For C20H17N5O2 (359.14): C, 66.84; H, 4.77; N, 

19.49. Found: C, 66.48; H, 4.36; N, 19.11. 

5-(2-Phenylquinazolin-4-ylamino)pyrimidine-2, 4(1H, 3H)-dione (9) 

Yield, 77%; m.p.>360oC. IR (KBr, cm-1): 3428, 3400 (NH), 3066 (CH arom.), 1699, 

1684 (2C=O),1618 (C=N). 1H- NMR (DMSO-d6): 7.4- 8.4 [m, 10H, Ar-H], 9.1 [s, 1H, 

NH, exchangeable with D2O], 11.0 [s, 1H, NHCO, exchangeable with D2O], 11.7 [s, 1H, 

CO-NH-CO, exchangeable with D2O]. 13C- NMR (DMSO-d6): 114.1, 123.2, 126.4 (2), 

128.3 (2), 128.5 (2), 128.8 (2), 130.7, 133.6, 136.6, 150.6, 150.9, 159.6, 162.1, 162.7. MS 

m/z (%):  331 (M+) (17.32), 220 (100). Anal. Calcd. For C18H13N5O2 (331.11): C, 65.25; 

H, 3.95; N, 21.14. Found: C, 65.55; H, 4.26; N, 21.46. 

N-(5-Bromopyrimidine -2-yl)-2-phenylquinazolin-4-amine (10) 

Yield, 89%; m.p. 233.2oC. IR (KBr, cm-1): 3328 (NH), 3085 (CH arom.), 1618 (C=N). 
1H- NMR (DMSO-d6): 6.8- 8.6 [m, 11H, Ar-H], 12.5 [s, 1H, NH, exchangeable with 

D2O]. 13C- NMR (DMSO-d6): 105.6, 114.8, 126.3, 126.5 (2), 127.0, 128.2, 128.7 (2), 

130.5, 131.8, 133.2, 152.0, 158.3 (2), 159.5, 162.5, 163.3. MS m/z (%):  378 (M+) 

(64.21), 296 (100). Anal. Calcd. For C18H12BrN5(378.23): C, 57.16; H, 3.20; N, 18.52. 

Found: C, 56.84; H, 3.54; N, 18.18. 

2-Phenyl-N-(pyrazin-2-yl) quinazolin-4-amine (11).  

Yield, 90%; m.p. 115.8oC. IR (KBr, cm-1): 3448 (NH), 3062 (CH arom.), 1612 (C=N). 
1H- NMR (DMSO-d6): 7.0-8.4 [m, 12H, Ar-H], 12.5 [s, 1H, NH, exchangeable with 

D2O]. 13C- NMR (DMSO-d6): 114.8, 114.8, 126.3, 127.9 (2), 128.2, 128.4, 129.0 (2), 

130.5, 131.2, 132.8, 133.1, 135.0, 139.8, 149.2, 152.7, 162.7, 163.2. MS m/z (%):  299 

(M+) (8.37), 222 (100). Anal. Calcd. For C18H13N5(299.33): C, 72.23; H, 4.38; N, 23.40. 

Found: C, 72.57; H, 4.07; N, 23.18. 

6-Phenyl-8H-benzo[g]quinazolino[4,3-b]quinazolin-8-one (12).  

Yield, 69%; m.p. 157.8 oC. IR (KBr, cm-1): 3050 (CH arom.), 1675 (C=O), 1593 (C=N). 
1H-NMR (DMSO-d6): 7.2-8.8 [m, 15H, Ar-H], 13C- NMR (DMSO-d6): 118.1, 121.2, 

125.7, 126.4, 127.0, 127.7 (2), 127.9 (2), 128.1, 128.2, 128.4 (2), 128.5, 129.7, 129.8, 

130.0, 130.8, 133.6, 134.3, 150.0, 150.6, 157.6 (2), 170.8. MS m/z (%):  373 (M+) 

(47.82), 344 (100). Anal. Calcd. For C25H15N3O (373.41): C, 80.41; H, 4.05; N, 11.25. 

Found: C, 80.76; H, 4.33; N, 10.88. 

N-(5,6-Dimethyl-1,2,4-triazin -3-yl)- 2-phenylquinazolin-4-amine (13) 
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Yield, 80%; m.p. > 360oC. IR (KBr, cm-1): 3410 (NH), 3100 (CH arom.), 2958, 2847 

(CH aliph.), 1617 (C=N). 1H- NMR (DMSO-d6): 2.4, 2.6 [2s, 6H, 2CH3], 6.7- 8.6 [m, 

9H, Ar-H], 12.5 [s, 1H, NH, exchangeable with D2O]. 13C- NMR (DMSO-d6): 18.5, 23.0, 

114.7, 124.8, 126.5 (2), 127.0, 127.9, 128.4 (2), 130.5, 131.8, 133.1, 138.8, 147.3, 149.2, 

158.3, 162.7, 163.2. MS m/z (%):  328 (M+) (2.23), 205 (100). Anal. Calcd. For C19H16N6 

(328.14): C, 69.50; H, 4.91; N, 25.59. Found: C, 69.23; H, 4.64; N, 25.27. 

9-Ethyl-N-(2-phenylquinazolin-4-yl)-9H-carbazol-3-amine (14) 

Yield, 91%; m.p. 135.7oC. IR (KBr, cm-1): 3413 (NH), 3052 (CH arom.), 2970, 2882 (CH 

aliph.), 1618 (C=N). 1H- NMR (DMSO-d6): 1.3 [t, 3H, CH3], 4.4 [q, 2H, CH2], 7.2- 8.8 

[m, 16H, Ar-H], 10.0 [s, 1H, NH, exchangeable with D2O]. 13C- NMR (DMSO-d6): 14.2, 

37.5, 109.2 (3), 109.7 (2), 114.5, 115.1, 119.2, 120.4, 122.3, 123.5, 126.2, 128.3 (2), 

128.7 (2), 130.7, 131.4 (2), 133.5 (2), 137.1, 138.9, 150.6, 158.6, 159.6. MS m/z (%):  

415 (M+) (19.53), 372 (100). Anal. Calcd. For C28H22N4(414.50): C, 81.13; H, 5.35; N, 

13.52. Found: C, 81.44; H, 5.04; N, 13.26. 

 

Evaluation of biological activity 

The compounds were evaluated for their ability to induce NQO1 using a quantitative 

microtiter plate assay in Hepa1c1c7 murine hepatoma cells as described previously 24. 

The results are expressed as the ratio of the specific enzyme activity in cell lysates 

prepared from treated over control wells. The CD value (Concentration of a compound 

required to Double the specific enzyme activity) represents a measure of inducer potency. 

Each compound was tested at 8 different concentrations in 8 replicate wells. Each 

experiment was performed three times.   

Molecular modeling study  

The structures of the synthesized 2-phenylquinazoline-4-amine derivatives were built 

according to the default parameters, using the MOE software version 10.2009. Geometry 

optimization as well as a systematic conformational search was carried out to an RMS 

gradient of 0.01 Å employing the ConfSearch module implemented in MOE. All 

computations were performed with the Merck Force Field (MMFF94s). Molecular 

docking study was performed using the crystallographic structure of the Kelch domain of 

Keap1 obtained from the Protein Data Bank (PDB ID: 4IQK) to explore the ability of the 

synthesized compounds to block the Nrf2-binding site of Keap1. The protein target was 

prepared for docking by addition of the missing hydrogens and calculating the partial 

charges. Internal validation was performed to the native ligand followed by docking of 

the compounds where the target protein was kept rigid, while ligands were allowed to 

rotate to accommodate freely inside the protein cavity. Following multiple separate 

docking simulations using default parameters, the best conformations were chosen based 

on the combination of S score data, E conformation and appropriate fitting with the 

relevant amino acids in the binding pocket. 
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Results and Discussion 

Chemistry 

4-Chloro-2-phenylquinazoline was used as a key starting material for the synthesis of the 

target compounds. Synthesis of quinazoline derivatives 2-14 has been achieved by 

substituting 4-chloro group in the starting 1 with different amino nitrogenous heterocyclic 

moieties namely, 2-amino pyridine, 4-amino pyridine, 3-amino-2-chloro pyridine, 2-

amino-5-chloro pyridine, 2-amino pyrimidine, 2-amino-4,6-dimethyl pyrimidine, 6-

amino-1,3-dimethyl uracil, 5-amino uracil, 2-amino-5-bromopyrimidine, 2-amino 

pyrazine, 3-amino-2-naphthoic acid, 3-amino-5,6-dimethyl-1,2,4-triazine and 3-amino-9-

ethyl carbazole as outlined in scheme 1. In this work, ten novel compounds, a reported 

compound 3 23 and two commercially available compounds 4 and 6 were synthesized in 

order to explore their cytoprotective activity. 

The synthesized quinazoline derivatives were characterized by IR, 1H-NMR,13C-NMR 

and mass spectra. The IR spectra of the compounds perfectly exhibited the absorption 

bands for NH, CH aromatic and C=N around 3328-3448, 3042-3100, 1601-1625 cm-1, 

respectively. 

In the 1H-NMR spectrum, aromatic protons were observed as complex mulitiplets in the 

range of δ 6.5-8.8 ppm. In addition, there is one exchangeable secondary amide (-NH) 

proton in the structures and are observed as broad singlet around δ 9.0-12.5 ppm to prove 

the introduction of the amino substitution to the structures. 

13C-NMR spectra exhibited additional signals for the introduced heterocyclic moieties in 

the aromatic region around δ 119.2-170.6 ppm which is in conformity with the assigned 

structures. 

The mass spectra of the compounds showed molecular ion peaks at their respective m/e 

along with the elemental analyses which were found within the limit of 0.4% of 

theoretical values for all the synthesized compounds. 

 

Biological evaluation 

All of the new compounds showed a concentration-dependent inducer activity (Figure 1). 

The inducer potencies ranged between 5.5 M (compound 4) and 70 nM (compound 12) 

(Table 1). Thus, compound 12 is approximately 80 times more potent than compound 4. 

Notably, in this series, compound 12 uniquely contains a structurally rigid substituent, 
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strongly suggesting that in addition to chemical reactivity, structural rigidity which 

perhaps affects its ability to bind to the inducer sensor Keap1, is an important 

determinant of inducer potency. 

Molecular modeling study  

Keap1 binds to Nrf2 promoting its degradation, resulting in low levels of cytoprotective 

gene products. Various compounds were reported to bind to the Keap1 Kelch domain and 

antagonize its activity 6-11, 12. For assessing the ability of the newly synthesized 

compounds to access and block the Kelch domain of Keap1, a molecular docking study 

was performed using the Keap1 crystal coordinates obtained from the Protein Data Bank 

(PDB ID: 4IQK). The main interactions observed between the validated native ligand and 

the protein target were found to be arene-cation interaction with Arg415, arene-arene 

interaction with Tyr525 and 3 hydrogen bonds with Ser602, Ser508 and Ser555 with S = 

-13.306 Kcal/mol and rmsd 0.6635 Kcal/mol/Å (Figure 2). Upon docking of the 

synthesized compounds, they all showed an arene–cation binding interaction with 

Arg415 via their aromatic rings and one of the nitrogen atoms of quinazoline ring. 

Whereas, Compound 12 (S= -9.571 Kcal/mol) has adopted a conformation allowing the 

presence of additional arene-arene interaction with Tyr525 and arene–cation interactions 

with Arg483 (Figure 3).    

Conclusion 

This work was aimed to synthesize novel 4-amino-substituted-quinazoline derivatives as 

NAD(P)H: quinone oxidoreductase 1 inducers (NQO1). NQO1 is a versatile 

cytoprotective enzyme which has prominent antioxidant functions due to of its ability to 

metabolize reactive endogenous and exogenous (dietary or environmental) quinones to 

their less reactive and less toxic hydroquinone forms by obligatory 2-electron reduction, 

thereby diverting them from redox cycling reactions and depletion of intracellular 

antioxidants, such as glutathione. Thus, NQO1 inducers could be of potential therapeutic 

benefit in oxidative stress-mediated pathologies, such as neurodegenerative diseases. The 

new compounds showed a concentration-dependent inducer activity with potencies in the 

low- to sub-micromolar range. Compound 12, which uniquely contains a structurally 

rigid substituent, is the most potent inducer in this series with activity in the nanomolar 

concentration range. Molecular docking of the synthesized compounds as Keap1-Nrf2 

protein-protein interaction inhibitors was performed. Compound 12 was found to bind to 

key amino acids in the binding site. These compounds represent promising quinazoline 

scaffold-based leads for further optimization as cytoprotective agents.  
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