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Abstract 

The Keap1/Nrf2/ARE pathway enables the cells to survive oxidative stress conditions 

through regulating the expression  of cytoprotective enzymes  such as NAD(P)H:quinone 

oxidoreductase 1 (NQO1). This work presents the design and synthesis of novel 

anilinoquinazoline derivatives (2-16a) and evaluation of their NQO1 inducer activity in 

murine cells. Molecular docking of the new compounds was performed to assess their 

ability to inhibit Keap1-Nrf2 protein-protein interaction through occupying the Keap1 

Nrf2-binding domain which leads to Nrf2 accumulation and enhanced gene expression of 

NQO1. The docking results showed that all compounds can potentially interact with 

Keap1, however, 1,5-Dimethyl-2-phenyl-4-(2-phenylquinazolin-4-ylamino)-1,2-

dihydropyrazol-3-one (9), the most potent inducer, showed the largest number of 

interactions with key amino acids in the binding pocket (Arg483, Tyr525 and  Phe478) 

compared to the native ligand or any other compound in this series.  

 

Keywords: anilinoquinazoline, molecular modeling, Keap1/Nrf2, cytoprotection, NQO1 

induction. 
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Introduction 

Antioxidants, from a chemical viewpoint, are considered electron donors to free radicals, 

molecular centers that tend to lose electrons initiating oxidations, and thus protecting the 

cells against oxidative stress1-3. Such oxidative stress situations, generated from 

imbalanced production of reactive oxygen species (ROS), e.g. superoxide anion radical 

(O2-) and hydrogen peroxide (H2O2), is unfortunately associated with many pathological 

conditions including stroke, diabetes, Alzheimer’s disease, cancer and chronic 

inflammation4. As a natural mechanism to counteract oxidative stress, aerobic cells 

express superoxide dismutase converting superoxide to hydrogen peroxide, which is 

subsequently disposed by catalase and peroxidases. In addition to these enzymatic 

defenses, there are the indirect antioxidants,” namely, the cytoprotective enzymes, that 

catalyze a wide variety of chemical reactions, protecting cells and organisms and 

allowing their adaptation to many types of stress5.  Among the most critical 

cytoprotective enzymes is the Kelch-like ECH-associated protein 1 (Keap1)-nuclear 

factor erythroid 2-related factor 2 (Nrf2)-antioxidant response elements (AREs) 

pathway6,7. The Keap1/Nrf2/ARE pathway enables the cells in adapting and surviving 

oxidative and inflammatory stress conditions through regulating the expression of a 

network of more than 100 cytoprotective genes. This pathway is inducible by various 

stress stimuli and small molecules (termed inducers), whereby the inducers react with 

specific cysteine residues of the protein sensor Keap1, which loses its ability to target 

Nrf2 for ubiquitination and proteasomal degradation, resulting in its stabilization, 

followed by binding to the ARE and transcriptional activation of cytoprotective genes, 

such as NAD(P)H: quinone oxidoreductase 1 (NQO1)6, 8-11. Recently, the Keap1-Nrf2 

protein-protein interaction is viewed as a critical target for intervention and potential 

management of a variety of oxidative stress-related pathologies, including cancer, 

Parkinson’s and Alzheimer’s disease, and diabetes12-15. Design of non-covalent small 

molecule modulators of the Keap-Nrf2 interaction has been intensively explored16,17. 

Quinazoline derivatives are considered excellent bioactive substances where a number of 

biological activities have been associated with antioxidant activity18-20. 
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In continuation of our work towards identification of NQO1 inducers21, 22, we herein 

report the synthesis, NQO1 inducer activity and Keap1 binding in silico screening results 

for a novel class of anilinoquinazolines. 

 

Materials and methods 

Chemistry 

Melting points (uncorrected) were determined in open capillaries on a Gallen Kamp 

melting point apparatus (Sanyo Gallen Kamp, UK). Pre-coated silica gel plates (Kieselgel 

0.25 mm, 60 G F 254; Merck, Germany) were used for thin layer chromatography. A 

developing solvent system of chloroform/methanol (8:2 mL) mixture was used and the 

spots were detected by ultraviolet light. IR spectra (KBr disc) were recorded using an FT-

IR spectrophotometer (Perkin Elmer, USA). NMR spectra were scanned on a NMR 

spectrophotometer (Bruker AXS Inc., Switzerland), operating at 500 MHz for 1H spectra 

and 125.76 MHz for 13C spectra. Chemical shifts are expressed in δ-values (ppm) relative 

to TMS as an internal standard, using DMSO-d6 as a solvent. Elemental analyses were 

done on a model 2400 CHNSO analyzer (Perkin Elmer, USA). All the values were within 

± 0.4 % of the theoretical values. All reagents used were of AR grads. The starting 

material 4-chloro-2-phenylquinazoline 1 was purchased from sigma (USA) and was 

directly used for preparation of the target compounds. 

 

General procedure for the Synthesis of 2-phenyl-quinazoline-4-amine derivatives (2-

16a). 

A mixture of 1 (2.40 g, 0.01 mol) and different amines (0.012 mol) in dry 

dimethylformamide (10 mL) containing trimethylamine 3 drops was refluxed for 24 h. , 

then left to cool. The solid product formed was collected by filtration and recrystallized 

from acetic acid to give 2-16a, respectively. 

 

N-Heptyl-2-phenylquinazolin-4- amine (2) 

Yield, 87%; m.p. 141.3 oC. IR (KBr, cm-1): 3278 (NH), 3074 (CH arom.), 2924, 2950, 

2851 (CH aliph.), 1639 (C=N). 1H-NMR (DMSO-d6): 0.9 (t, 3H, CH3), 1.2 [m, 10H, 

5CH2], 3.8 [t, 2H, CH2-NH], 7.6-8.7 [m, 9H, Ar-H], 10.8 [s, 1H, NH exchangeable with 

D2O]. 13C-NMR (DMSO-d6): 14.3, 22.5, 26.8, 28.9, 31.5, 31.6, 42.1, 112.6, 120.3, 124.8 

(2), 128.2, 129.3, 129.5, 131.7, 133.8, 135.5, 139.5, 157.3, 160.2. MS m/z (%):  319 (M+) 
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(3.23), 204 (100). Anal. Calcd. For C21H25N3 (319): C, 78.96; H, 7.89; N, 13.15. Found: 

C, 78.59; H, 8.13; N, 12.81. 

 

N-(Octan-2-yl)-2-phenylquinazolin-4-amine (3) 

Yield, 80%; m.p. 192.8 oC. IR (KBr, cm-1): 3191 (NH), 3100 (CH arom.), 2954, 2925, 

2850 (CH aliph.), 1629 (C=N). 1H-NMR (DMSO-d6): 0.7 [t, 3H, CH3], 0.8 [d, 3H, CH3          

, J = 7.2 Hz], 1.2-1.8 [m, 10H, 5CH2], 2.8 [m, 1H, CH], 7.6-8.8 [m, 9H, Ar-H], 10.0 [s, 

1H, NH exchangeable with D2O]. 13C-NMR (DMSO-d6): 14.3, 20.3, 21.2, 25.8, 28.8, 

31.6, 36.4, 48.6, 112.5, 120.4, 124.9 (2), 128.2, 129.4, 129.6 (2), 131.9, 133.8, 136.0, 

157.5, 159.8, 160.6. MS m/z (%):  333 (M+) (12.7), 255 (100). Anal. Calcd. For C22H27N3 

(333.47): C, 79.24; H, 8.16; N, 12.60. Found: C, 79.50; H, 7.84; N, 12.25. 

 

2-Phenyl-N-(2-(pyrrolidin-1-yl)ethyl)quinazolin-4-amine (4) 

Yield, 90%; m.p. 93.9 oC. IR (KBr, cm-1): 3325 (NH), 358 (CH arom.), 2935, 2846 (CH 

aliph.), 1617 (C=N).  1H-NMR (DMSO-d6): 1.4-1.5 [m, 4H, CH2-CH2 Cyclo], 2.4-2.5 [ 

m, 4H, CH2-N-CH2 Cyclo], 2.6 [t, 2H, N-CH2], 3.8 [t, 2H, CH2-NH], 7.8-8.5 [m, 10H, 

Ar-H + NH].  13C-NMR (DMSO-d6): 24.5 (2), 40.5, 54.7, 57.7 (2), 114.3, 123.0, 125.6 

(2), 128.3, 128.6, 128.7 (2), 130.4, 133.0, 139.2, 150.3, 159.7, 160.1. MS m/z (%):  318 

(M+) (22.5), 247 (100). Anal. Calcd. For C20H22N4 (318): C, 75.44; H, 6.96; N, 17.60. 

Found: C, 75.09; H, 6.63; N, 17.92. 

 

N-(2-(1-Methylpyrrolidin-2-yl)ethyl)-2-phenylquinqzolin-4-amine (5) 

Yield, 85%; m.p. >360 oC. IR (KBr, cm-1): 3308 (NH), 3060 (CH arom.), 2950, 2819, 

(CH aliph.), 1618 (C=N). 1H- NMR (DMSO-d6): 1.7-2.3 [m, 6H, 3CH2 Cyclo], 1.9 [m, 

2H, CH2-CH], 2.4 [m, 1H, CH Cyclo], 2.5 [s, 3H, N-CH3], 3.0 [m, 2H, CH2-NH], 7.4-8.6 

[m, 10H, Ar-H + NH]. 13C- NMR (DMSO-d6): 21.4, 29.4, 29.5, 40.4, 40.5, 55.2, 66.0, 

114.3, 123.4, 125.7 (2), 128.2, 128.3, 128.7 (2), 130.5, 133.2, 139.1, 150.3, 159.7, 160.2. 

MS m/z (%):  332 (M+) (21.6), 316 (100). Anal. Calcd. For C21H24N4 (332): C, 75.87; H, 

7.28; N, 16.85. Found: C, 76.11; H, 7.57; N, 17.20. 

 

N-(2-(1-Methyl-1H-pyrrol-2-yl)ethyl)-2-phenylquinqzolin-4-amine (6) 

Yield, 82%; m.p. 172.7 oC. IR (KBr, cm-1): 3334 (NH), 3059 (CH arom.), 2930, 2825 

(CH aliph.), 1618 (C=N). 1H-NMR (DMSO-d6): 1.9 (s, 3H, CH3), 2.8-3.9 [m, 4H, 2CH2], 

5.6-6.6 [m, 3H, 3CH Pyrrole], 7.5-8.5 [m, 10H, Ar-H + NH]. 13C-NMR (DMSO-d6): 

25.9, 33.6, 41.0, 106.4, 106.7, 114.3, 121.8, 123.0, 125.5, 125.7 (2), 128.1, 128.3, 128.6 

(2), 130.4, 133.1, 133.4, 150.4, 159.8, 162.7. MS m/z (%):  328 (M+) (3.26), 248 (100). 

Anal. Calcd. For C21H20N4 (328): C, 76.80; H, 6.14; N, 17.06. Found: C, 76.55; H, 6.47; 

N, 16.81. 
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1-(3-(2-Phenylquinazolin-4-ylamino)propylpyrrolidin-2-one (7) 

Yield, 88%; m.p. >360 oC. IR (KBr, cm-1): 3370(NH), 3100 (CH arom.), 2932, 2847, 

(CH aliph.), 1654 (C=O), 1572 (C=N). 1H-NMR (DMSO-d6): 1.5-3.2 [m, 6H, 3CH2 

Cyclo], 1.9 [m, 2H, CH2-CH2-CH2], 3.3-3.5 [m, 4H, NH-CH2 +N-CH2], 7.3-8.8 [m, 10H, 

Ar-H + NH]. 13C-NMR (DMSO-d6): 18.5, 20.5, 29.1, 40.3, 40.4, 56.5, 114.3, 123.1, 

125.8 (2), 128.3, 128.6, 130.5 (2), 133.1, 135.7, 139.1, 150.3, 159.6, 160.1, 183.2. MS 

m/z (%):  346 (M+) (15.38), 317 (100). Anal. Calcd. For C21H22N4O (346): C, 72.81; H, 

6.40; N, 16.17. Found: C, 72.54; H, 6.08; N, 16.46. 

 

N-(1-Ethyl-1H-pyrazol-5-yl)-2-phenylquinazolin-4-amine (8) 

Yield, 92%; m.p. 243.5 oC. IR (KBr, cm-1): 3414 (NH), 3062 (CH arom.), 2956, 2854 

(CH aliph.), 1617 (C=N). 1H-NMR (DMSO-d6): 1.3 [t, 3H, CH3], 4.3 [q, 2H, CH2], 7.4-

8.5 [m, 11H, Ar-H], 12.5 [s, 1H, NH exchangeable with D2O]. 13C-NMR (DMSO-d6): 

16.2, 40.4, 93.8, 114.6, 121.4, 126.3 (2), 127.0, 127.8, 128.2 (2), 129.0, 131.8, 133.2, 

135.0, 149.1, 152.9, 162.8 (2).  MS m/z (%):  315(M+) (9.54), 286 (100). Anal. Calcd. 

For C19H17N5 (315): C, 72.36; H, 5.43; N, 22.21. Found: C, 72.69; H, 5.16; N, 22.51. 

 

1,5-Dimethyl-2-phenyl-4-(2-phenylquinazolin-4-ylamino)-1,2-dihydropyrazol-3-one (9). 

Yield, 84%; m.p. 149.4 oC. IR (KBr, cm-1): 3413 (NH), 3060 (CH arom.), 2923, 2839, 

(CH aliph.), 1654 (C=O), 1618 (C=N). 1H-NMR (DMSO-d6): 2.3 [s, 3H, CH3], 3.1 [s, 

3H, N-CH3], 7.3-8.5 [m, 14H, Ar-H], 9.4 [s, 1H, NH exchangeable with D2O]. 13C-NMR 

(DMSO-d6): 11.6, 31.2, 114.2 (2), 123.6, 124.0 (2), 126.2, 126.7 (2), 128.2, 128.4, 128.7 

(2), 129.6 (2), 130.6 (2), 133.5, 135.9, 138.8, 150.8, 159.5, 160.1, 162.7. MS m/z (%):  

407 (M+) (5.98), 331 (100). Anal. Calcd. For C25H21N5O (407): C, 73.69; H, 5.19; N, 

17.19. Found: C, 73.44; H, 5.50; N, 17.56. 

 

N-(3-(1H-Imidazol-1-yl)propyl)-2-phenylquinazolin-4-amine (10) 

Yield, 79%; m.p. 174.5 oC. IR (KBr, cm-1): 3231 (NH), 3058 (CH arom.), 2927, 2866 

(CH aliph.), 1617 (C=N). 1H-NMR (DMSO-d6): 2.1-4.1 [m, 6H, CH2-CH2-CH2-N], 7.2-

8.4 [m, 12H, Ar-H], 8.5 [s, 1H, NH exchangeable with D2O]. 13C-NMR (DMSO-d6): 

30.6, 40.5, 44.4, 114.3, 119.9, 123.1, 125.7 (2), 128.3, 128.6, 128.8, 130.5 (2), 133.1 (2), 

137.8, 139.0, 150.3, 159.6, 160.1.   MS m/z (%):  329 (M+) (17.23), 288 (100). Anal. 

Calcd. For C20H19N5 (329): C, 72.93; H, 5.81; N, 21.26. Found: C, 72.71; H, 5.49; N, 

20.93. 

 

N-(3-(2-Methylpiperidin-1-yl)propyl)-2- phenylquinazolin-4-amine (11) 

Yield, 84%; m.p. 254.7 oC. IR (KBr, cm-1): 3434(NH), 3089 (CH arom.), 2957, 2779, 

(CH aliph.), 1633 (C=N). 1H-NMR (DMSO-d6): 1.2 [s, 3H, CH3], 1.3-2.6 [m, 9H, 4CH2 

+ CH Cyclo], 1.6-3.8 [m, 6H, 3CH2], 7.4-8.9 [m, 9H, Ar-H], 10.8 [s, 1H, NH 
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exchangeable with D2O]. 13C-NMR (DMSO-d6): 12.3, 22.2, 23.5, 27.9, 34.4, 40.4, 50.1, 

55.1, 59.0, 112.9, 120.9, 125.0 (2), 128.2 (2), 129.3 (2), 129.8, 133.7, 135.8, 157.6 (2), 

160.6. MS m/z (%):  360 (M+) (33.85), 344 (100). Anal. Calcd. For C23H28N4 (360): C, 

76.63; H, 7.83; N, 15.54. Found: C, 76.91; H, 7.49; N, 15.22. 

 

2- Phenyl-N-(2-piperidin-1-yl)ethyl)quinazolin-4-amine (12) 

Yield, 90%; m.p. 317.5 oC. IR (KBr, cm-1): 3401 (NH), 3100 (CH arom.), 2936, 2713 

(CH aliph.), 1630 (C=N). 1H-NMR (DMSO-d6): 2.2-2.7 [m, 10H, 5CH2 Cyclo], 2.8 [t, 

2H, N-CH2], 4.3 [s, 2H, CH2NH], 7.4-9.1 [m, 9H, Ar-H], 10.2 [s, 1H, NH exchangeable 

with D2O]. 13C-NMR (DMSO-d6): 24.5, 28.0 (2), 47.4, 50.7, 59.4 (2), 112.6, 120.5, 125.0 

(2), 128.1, 128.2, 129.4 (2), 130.4, 131.5, 133.9, 157.4, 160.2, 162.8.  MS m/z (%):  

332(M+) (45.11), 219 (100). Anal. Calcd. For C21H24N4 (332.20): C, 75.87; H, 7.28; N, 

16.85. Found: C, 76.11; H, 7.55; N, 17.10. 

 

N-(2-Morpholinoethyl)-2-phenylquinazolin-4-amine (13) 

Yield, 76%; m.p. 273.4 oC. IR (KBr, cm-1): 3413 (NH), 3076 (CH arom.), 2927, 2836 

(CH aliph.), 1599 (C=N). 1H-NMR (DMSO-d6): 2.3-2.4 [m, 4H, CH2-N-CH2 

morpholino], 2.5-3.2 [m, 4H, 2CH2], 3.6-4.3 [m, 4H, CH2-O-CH2], 7.3-8.8 [m, 9H, Ar-

H], 10.3 [s, 1H, NH exchangeable with D2O]. 13C-NMR (DMSO-d6): 51.5, 54.9, 55.4 (2), 

63.7 (2), 113.3, 126.9, 127.8 (2), 129.6 (2), 129.8 (2), 133.1 (2), 135.5, 159.1, 160.2, 

163.4.  MS m/z (%):  334 (M+) (22.17), 256 (100). Anal. Calcd. For C20H22N4O (334): C, 

71.83; H, 6.63; N, 16.75. Found: C, 71.50; H, 6.30; N, 16.45. 

 

N-(3-Morpholinopropyl)-2-phenylquinazolin-4-amine (14) 

Yield, 80%; m.p. 235.8 oC. IR (KBr, cm-1): 3324 (NH), 3088 (CH arom.), 2954, 2864 

(CH aliph.), 1610 (C=N). 1H-NMR (DMSO-d6): 1.8-1.9 [m, 2H, NH-CH2-CH2-CH2], 

2.2-2.3 [m, 4H, CH2-N-CH2 morpholino], 3.1 [t, 2H, N-CH2], 3.2 [t, 2H, NH-CH2], 3.8-

3.9 [m, 4H, CH2-O-CH2], 7.5-8.5 [m, 9H, Ar-H], 11.2 [s, 1H, NH exchangeable with 

D2O]. 13C-NMR (DMSO-d6): 23.7, 40.5, 51.4, 54.3 (2), 63.6 (2), 113.9, 123.8, 128.8 (2), 

128.9 (2), 129.6 (2), 132.7, 133.1, 135.6, 152.2, 160.3, 161.7. MS m/z (%):  348 (M+) 

(10.62), 221 (100). Anal. Calcd. For C21H24N4O (348): C, 72.39; H, 6.94; N, 16.08. 

Found: C, 72.08; H, 6.60; N, 16.35. 

 

N-(1-Benzylpiperidin-2-yl)-2-phenylquinazolin-4-amine (15) 

Yield, 83%; m.p. 250.9 oC. IR (KBr, cm-1): 3380 (NH), 3077 (CH arom.), 2988, 2867 

(CH aliph.), 1630 (C=N). 1H-NMR (DMSO-d6): 2.1-2.8 [m, 9H, 4CH2 + CH Cyclo], 4.3 

[s, 2H, CH2-Ph], 7.4-8.9 [m, 14H, Ar-H], 10.2 [s, 1H, NH exchangeable with D2O].               
13C-NMR (DMSO-d6): 22.6, 28.0, 34.5, 50.7, 59.4, 83.2, 112.6, 125.0, 128.2, 129.2 (2), 

129.4 (3), 129.9 (3), 130.4 (2), 131.5, 132.0, 133.9, 136.1, 157.5, 160.2, 162.8. MS m/z 
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(%):  394 (M+) (5.88), 314 (100). Anal. Calcd. For C26H26N4 (394.22): C, 79.16; H, 6.64; 

N, 14.20. Found: C, 79.48; H, 6.36; N, 13.83. 

 

6-(2-Penylquinazolin-4-ylamino)hexanoic acid (16a) 

Yield, 76%; m.p. 164.6 oC. IR (KBr, cm-1): 3438 (OH), 3311 (NH), 3078 (CH arom.), 

2939, 2854 (CH aliph.), 1687 (C=O), 1613 (C=N). 1H-NMR (DMSO-d6):1.4-1.8 [m, 6H, 

3CH2], 2.2 [t, 2H, CH2CO], 3.8 [t, 2H, NH-CH2], 7.3-8.8 [m, 9H, Ar-H], 10.5 [s, 1H, 

NH exchangeable with D2O], 14.9 [s, 1H, OH exchangeable with D2O]. 13C-NMR 

(DMSO-d6): 24.6, 26.3, 28.3, 34.0, 41.9, 112.6, 126.8, 128.2 (2), 129.4 (2), 129.6 (2), 

133.7 (2), 135.8, 157.4 (2), 160.2, 174.8. MS m/z (%):  335 (M+) (39.45), 290 (100). 

Anal. Calcd. For C20H21N3O2 (335): C, 71.62; H, 6.31; N, 12.53. Found: C, 71.29; H, 

6.60; N, 12.19. 

 

Biological evaluation 

Hepa1c1c7 murine hepatoma cells were grown in a humidified atmosphere at 37 oC, 5% 

CO2. The cell culture medium was -MEM supplemented with 10% (v/v) heat- and 

charcoal-inactivated fetal bovine serum. For evaluation of the potential NQO1 inducer 

activity, cells (104 per well) were grown in 96-well plates for 24 h, after which the cell 

culture medium was replaced with fresh medium containing each inducer (dissolved in 

DMSO and diluted in the medium 1:1000), and the cells were grown for a further 48 h. 

There were eight replicates of each treatment of serial dilutions of inducers. The final 

DMSO concentration in the cell culture medium was maintained 0.1% (v/v) in all wells. 

At the end of the treatment period, cell lysates were prepared in digitonin and the specific 

activity of NQO1 was determined using menadione as a substrate as described23,24. The 

Concentration which Doubles the specific activity of NQO1 (CD value) was used as a 

measure of inducer potency. Mean values for the eight replicate wells are shown for each 

data point. The standard deviation for each data point was within 5% of the mean value. 

 

Molecular modeling study 

The molecular model of all the new anilinequinazoline derivatives was built using MOE 

software suite version 10.2008 maintaining all the default parameters. The structures’ 

geometry was optimized and a systematic conformational search was carried out to an 

RMS gradient of 0.01Å using the ConfSearch module implemented in MOE. 

Computations were set to be performed with the Merck Force Field (MMFF94s). The 
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new compounds’ ability to access and block the Nrf2-binding site of Keap1 was 

evaluated by performing a molecular docking study using the crystallographic structure 

of Keap1 obtained from the Protein Data Bank (PDB ID: 4IQK). Following addition of 

the missing hydrogens and calculating the partial charges of the receptor, validation of 

the docking has been carried out by docking of the native ligand. Afterwards, the ligands 

were docked where they were left free to explore all conformations possible inside the 

enzyme. Multiple separate docking simulations using default parameters were performed 

followed by choosing the best conformations based on the combination of  S score data, 

E conformation and appropriate fitting with the relevant amino acids in the binding 

pocket. 

 

 

Results and Discussion 

Chemistry 

The new anilinoquinazolines derivatives 2-16a that were designed for the aim of 

exploring their potential cytoprotective activity, were synthesized from the key starting 

material 4-chloro-2-phenylquinazoline 1 by allowing it to react with primary amines with 

their side chains bearing aliphatic groups (e.g. heptane, octane), aromatic groups (e.g. 

pyrrolidine, imidazole, piperidine) or substituted aromatic rings (e.g. methyl pyrrolidine, 

benzyl piperidine, methyl piperidine). Refluxing of 1 with the amines in dry 

dimethylformamide in the presence of triethylamine as a catalyst yielded the desired 

corresponding compounds 2-16a with good yield values. (Scheme 1 and 2) The 

structures of the products were assigned on the basis of their analytical and spectral data. 

First, the IR spectra of the reaction products showed in all compounds an absorption band 

corresponding to NH function in the region 3434-3191 cm-1, in addition to a C=N band in 

the region 1639-1572 cm-1. Moreover, compounds 7, 9 and 16a have shown an extra 

carbonyl absorption band in the region 1687-1654 cm-1. Finally, Compounds 4-16a 

bearing aliphatic carbon chains have shown absorption peaks around 2988-2713 cm-1. 

Moreover, 1H-NMR spectra of compounds 2–16a in (DMSO-d6) revealed a singlet signal 

that was exchangeable with D2O in the region 9.4-11.2 ppm corresponding to a NH 

group. Regarding compound 16, compound 1 was reacted with 6-aminocaproic acid with 

the expected product to be azepan-2-one derivative 16b, however, the hexanoic acid 
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derivative 16a was obtained instead. That was revealed on the basis of elemental analysis 

and IR spectrum which showed the presence of OH absorption band at 3438 cm-1, NH 

band at 3311 cm-1 and a carbonyl band at 1687 cm-1. That  was further confirmed using 

spectral analysis where 1H-NMR  showed  a triplet at 3.8 ppm for the NH-CH2, signal at 

10.5 ppm for the NH group which is exchangeable with D2O and another signal at 14.9 

ppm for the OH group which is exchangeable with D2O. Moreover, 13C- NMR of 16a 

revealed signals at 24.6 ppm for CH2-CH2-COOH, 26.3 ppm for CH2-CH2-CH2-COOH , 

28.3 ppm for NH-CH2-CH2, 34.0 ppm for CH2-COOH, 41.9 ppm for NH-CH2, 174.8 

ppm for C=O group. These assignments fully support and affirm the proposed structure.  
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Biological activity 
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The ability of the novel compounds to duplicate the activity of NAD(P)H:quinone 

oxidoreductase 1 (NQO1) was used as a measure of  their cytoprotective activity (CD 

values). Evaluation of the NQO1 inducer activity showed that compounds 2, 5 and 14 

were inactive, whereas compounds 4, 6, 11, 12, 13, and 16a had weak activity, however, 

CD value was not reached (Figure 1). On the other hand, compounds 3 (CD = 14 µM), 7 

(CD = 26 µM) and 15 (CD = 19 µM) had moderate inducer activity. Compounds 8 (CD = 

5.2 µM) and 10 (CD = 5.5 µM) were of approximately equal potency. However, the cell 

responses to them were very different where the dose-response dependency was very 

clear for compound 8, whereas it was completely absent for compound 10. The most 

potent inducer in this series was compound 9 (CD = 3.9 µM), which also showed a very 

clear dose response with a magnitude of induction of ~6-fold at a concentration of 50 

µM. 
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Table 1: NQO1 inducer activity and CD values of the test compounds. 

 

*NR = Not Recorded 

** CD data presented are the averages of 3 independent experiments, each with 8 replicate wells of cells, 

and SD (standard deviation) for each data point was within 5% of the value. 

 

  
Figure 1: Concentration dependence of NQO1 inducer activity of quinazoline derivatives. 

Conc. 

(uM) 

Compound # 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16a 

0.1563 NR* 1.05 NR NR NR NR NR NR NR NR NR NR NR NR NR 

0.3125 NR 1.08 NR NR NR NR NR NR NR NR NR NR NR NR NR 

0.625 NR 1.07 NR NR NR NR NR NR NR NR NR NR NR NR NR 

0.781 1.25 NR 1.24 1.09 0.97 1.01 1.23 1.34 1.66 1.11 1.01 1.12 1.01 1.12 1.04 

1.25 NR 1.19 NR NR NR NR NR NR NR NR NR NR NR NR NR 

1.563 1.25 NR 1.3 1.1 0.96 1.01 1.33 1.56 1.78 1.1 1.12 1.17 1.04 1.14 1.04 

2.5 NR 1.28 NR NR NR NR NR NR NR NR NR NR NR NR NR 

3.125 1.21 NR 1.49 1.12 1.08 1.1 1.57 1.86 1.89 1.2 1.26 1.16 1.06 1.23 1.1 

5 NR 1.56 NR NR NR NR NR NR NR NR NR NR NR NR NR 

6.25 1.2 NR 1.68 1.2 1.31 1.25 2.12 2.41 2.03 1.3 1.36 1.24 1.11 1.38 1.23 

10 NR 1.93 NR NR NR NR NR NR NR NR NR NR NR NR NR 

12.5 NR NR 1.76 1.28 1.54 1.48 2.63 3.23 2.1 1.5 NR 1.39 1.1 1.67 1.45 

20 NR 2.13 NR NR NR NR NR NR NR NR NR NR NR NR NR 

25 NR NR NR NR NR 1.98 3.34 4.74 NR NR NR 1.41 1.06 2.22 1.53 

50 NR NR NR NR NR 2.73 4.16 6.45 NR NR NR NR NR 3.19 NR 

100 NR NR NR NR NR 3.63 4.25 NR NR NR NR NR NR 4.02 NR 

CD** NR 14 NR NR NR 26 5.2 3.9 5.5 NR NR NR NR 19 NR 
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Molecular modeling 

It has been established that binding of Keap1 to Nrf2 promotes its degradation, thus 

maintaining low levels of expression of cytoprotective gene products. Several small 

molecule compounds have been reported to have binding affinity to the Keap1 Kelch 

domain therefore antagonizing its activity25, 26. In order to assess  the ability of the newly 

synthesized compounds to access and block the Kelch domain of Keap1, a molecular 

docking study was performed using the crystal structure obtained from the Protein Data 

Bank (PDB ID: 4IQK) using MOE software suite version 10.2008. The key interactions 

detected between the validated native ligand and the receptor are found to be arene-cation 

interaction with Arg415, arene-arene interaction with Tyr525 and 3 hydrogen bonds with 

Ser602, Ser508 and Ser555 with S = -13.306 Kcal/mol with a rmsd of 0.6635 Kcal/mol/Å 

(Figure 2). Docking of the synthesized compounds revealed that binding to Arg415 

through an arene-cation interaction is an important common interaction among all 

compounds. Moreover, by observing the interactions of compounds 4-16a it was found 

that compounds showing activity have a larger number of interactions with the binding 

site of the sensor protein via their side chain or via their main skeleton. That may 

emphasize the role of variation of the side chain in either making its own interactions or 

in pushing the phenylquinazoline moiety to more interactions with more amino acids. 

By having a further insight of compound 9 that showed the best activity (CD = 3.9 µM), 

it was obvious that it also showed the best binding affinity with S = - 11.7347 Kcal/mol. 

Compound 9 is able to make two arene-cation interactions with Arg483. Although that 

Arg is different from Arg415 that the native ligand interact with, the overlap of 

compound 9 over the native ligand showed a change in the orientation of the compound 

to ensure better fitting in the pocket. (Figure 3). Moreover, an arene-arene interactions is 

noticed with Tyr525 similar to the native ligand. Finally an additional arene-arene 

interaction is noticed with Phe478; that additional interaction may be related to the high 

activity of that compound since it is only noticed in the interactions of compound 9 with 

the sensor. (Figure 4)   
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Figure 2: Interactions of the native ligand with the Kelch domain of Keap1 (PDBID: 41QK) 

 

 

 

 

 
Figure 3: Overlap of compound 9 (magenta) over native ligand (cyan) the Kelch domain of Keap1. 
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Figure 4: Interactions of Compound 9 with the Kelch domain amino acids of Keap1.  

 

 

Conclusion 

In conclusion, this study deals with the synthesis of novel anilinoquinazoline derivatives 

with potential cytoprotective NQO1 inducing activity. Among the derivatives 2-16a, 

twelve compounds showed activity, with six of them showing CD values ranging 

between 3.9- 25 µM. Finally, the molecular docking study has shown that the most active 

derivative, compound 9 (CD = 3.9 µM), showed arene-arene interactions with key amino 

acids in the active pocket of Keap1. The obtained results introduce compound 9 as a lead 

for anilinoquinazoline scaffold-based cytoprotective agents thus serving as a starting 

point for lead optimization of new molecules based on the chemotype described herein. 

 

Declaration of interest 

The authors declare that they have no conflict of interest. The authors would like to 

extend their sincere appreciation to the Deanship of Scientific Research at King Saud 

University for funding of this research through the Research Group Project no. RGP-

VPP-302. Maureen Higgins and Albena T. Dinkova-Kostova are grateful to Cancer 

Research UK (C20953/A10270 and C20953/A18644) for financial support. 

 

 

 

 



17 
 

 

References 

1. Harman D. Antioxidant supplements: Effects on disease and aging in the United 

States population. J Am Aging Assoc 2000;23:25-31. 

2. Fridovich I. Superoxide radical and superoxide dismutases. Annu Rev Biochem 

1995;64:97-112. 

3. Sies H. Oxidative stress: from basic research to clinical application. Am J Med 

1991;91:31S-38S. 

4. Waris G, Ahsan H. Reactive oxygen species: role in the development of cancer 

and various chronic conditions. J Carcinog 2006;5-14. 

5. Dinkova-Kostova AT, Talalay P. NAD(P)H:quinone acceptor oxidoreductase 1 

(NQO1), a multifunctional antioxidant enzyme and exceptionally versatile 

cytoprotector. Arch Biochem Biophys 2010;501:116-123. 

6. Kensler TW, Wakabayashi N, Biswal S. Cell survival responses to environmental 

stresses via the Keap1-Nrf2-ARE pathway Annu Rev Pharmacol Toxicol 

2007;47:89-116. 

7. Ross D. Quinone reductases multitasking in the metabolic world. Drug Metab 

Rev 2004;36:639-654. 

8. Talalay P, De Long MJ, Prochaska HJ. Identification of a common chemical 

signal regulating the induction of enzymes that protect against chemical 

carcinogenesis. Proc Natl Acad Sci U S A 1988;85:8261-8265. 

9. Hayes JD, McMahon M, Chowdhry S, et al.  Cancer chemoprevention 

mechanisms mediated through the Keap1-Nrf2 pathway. Antioxid Redox Signal 

2010;13:1713-1748. 

10. Taguchi K, Motohashi H, Yamamoto M. Molecular mechanisms of the Keap1-

Nrf2 pathway in stress response and cancer evolution. Genes Cells 2011;16:123-

140. 

11. Baird L, Dinkova-Kostova AT. The cytoprotective role of the Keap1-Nrf2 

pathway. Arch Toxicol 2011;85:241-272. 

12. Li J, Ichikawa T, Janicki JS, et al. Targeting the Nrf2 pathway against 

cardiovascular disease. Expert Opin Ther Targets 2009;13:785-794. 



18 
 

13. Zhao J, Redell JB, Moore AN, et al.  A novel strategy to activate cytoprotective 

genes in the injured brain. Biochem Biophys Res Commun 2011;407:501-506. 

14. Steel R, Cowan J, Payerne E, et al. Anti-inflammatory Effect of a Cell-Penetrating 

Peptide Targeting the Nrf2/Keap1 Interaction. ACS Med Chem Lett 2012;3:407-

410. 

15. Williamson TP, Amirahmadi S, Joshi G, et al.  Discovery of potent, novel Nrf2 

inducers via quantum modeling, virtual screening, and in vitro experimental 

validation. Chem Biol Drug Des 2012;80:810-820. 

16. Hu L, Magesh S, Chen L, et al.  Discovery of a small-molecule inhibitor and 

cellular probe of Keap1-Nrf2 protein-protein interaction. Bioorg Med Chem Lett 

2013;23:3039-3043. 

17. Zhuang C, Miao Z, Sheng C, et al.  Updated research and applications of small 

molecule inhibitors of Keap1-Nrf2 protein-protein interaction: a review. Curr 

Med Chem 2014;21:1861-1870. 

18. Nesterova N, Kovalenko S, Belenichev I, et al.  Formation of combinational 

library of quinazoline-4-yl-hydrazones with antioxidant activity.  Ukraine Med. 

Khim 2004;6:14-21. 

19. Nesterova N, Kovalenko S, Karpenkos O, et al.  Synthesis and antioxidant activity 

of 4-arylidenehydrazinoquinazolines. Ukr Farmatsevtichnii Zhurnal (Kiev) 

2004;22:5-10. 

20. Al-Omar M, Al-Rashood S, El-Subbagh H, et al.  Interaction of 2-thio-4-oxo-

quinazoline derivatives with guinea pig liver molybdenum hydroxylases, xanthine 

oxidase and aldehyde oxidase. J Biological Sci 2005;5:370-378. 

21. Ghorab MM, Higgins M, Alsaid MS, et al. Synthesis, molecular modeling and 

NAD(P)H:quinone oxidoreductase 1 inducer activity of novel cyanoenone and 

enone benzenesulfonamides. J Enzyme Inhib Med Chem 2014;29:840-845. 

22. Ghorab M, Higgins M, Dinkova-Kostova A, et al. Novel Thioureido Derivatives 

Carrying Thione and Sulfonamide Moieties Induce the Cytoprotective Enzyme 

NAD(P)H:Quinone Oxidoreductase 1. Asian Journal of Chemistry 2014;26: 

8501-8504 



19 
 

23. Prochaska HJ, Santamaria AB. Direct measurement of NAD(P)H:quinone 

reductase from cells cultured in microtiter wells: a screening assay for 

anticarcinogenic enzyme inducers. Anal Biochem 1988;169:328-336. 

24. Fahey JW, Dinkova-Kostova AT, Stephenson KK, et al.  The "Prochaska" 

microtiter plate bioassay for inducers of NQO1. Methods Enzymol 2004;382:243-

258. 

25. Marcotte D, Zeng W, Hus JC, et al. Small molecules inhibit the interaction of 

Nrf2 and the Keap1 Kelch domain through a noncovalent mechanism. Bioorg 

Med Chem 2013;21:4011–4019. 

26. Magesh S, Chen Y, Hu L. Small molecule modulators of Keap1- Nrf2-ARE 

pathway as potential preventive and therapeutic agents. Med Res Rev 

2012;32:687–726. 

 

 


