1,833 research outputs found

    Expression and inheritance of the wheat Glu-1DX5 gene in transgenic maize

    Get PDF
    We have produced transgenic maize plants containing a wheat Glu-1Dx5 gene encoding the high-molecular-weight glutenin subunit 1Dx5. Analysis by SDS-PAGE showed that a protein similar in size to the wheat 1Dx5 subunit accumulates in the endosperm of transgenic maize from four independent transformation events. This protein reacts with a monoclonal antibody specific to the wheat 1Dx5 subunit and was not detected in nontransgenic controls or in pollen, anthers, leaves or embryos of plants grown from seeds expressing this protein in endosperm. Genomic Southern-blot analysis is consistent with results from SDS-PAGE and indicates that the transgene integration sites are complex and are different in the four events studied. Using the presence of this protein as a phenotypic marker, we studied the inheritance of this gene through three sexual generations. Reciprocal crosses with nontransgenic plants and self-pollinations were performed, and the resulting kernels were analyzed for the presence of the 1Dx5 subunit. These data, together with PCR analysis for the transgene, suggest that the transgene is inefficiently transmitted through pollen in all four events

    Description and evaluation of a ventriculo-coronary artery bypass device that provides bi-directional coronary flow

    Get PDF
    Objective: The objective of this study was to assess acute patency of a new myocardial revascularization device that connects the left ventricular cavity to a coronary artery (termed ventriculo-coronary artery bypass, VCAB) thereby providing proximal and distal blood flow from the site of the anastomosis. Methods: A device made of expanded polytetrafluoroethylene and low density polyethylene was implanted from the base of the left ventricle to the mid left anterior descending coronary artery (LAD) in 11 juvenile domestic pigs using a beating heart approach. Flow rates were measured in the distal LAD before and after implant using ultrasonic flow techniques, and patency was assessed at explant at either 2 or 4 weeks post-implantation. Myocardial perfusion using positron emission tomography (PET) was assessed in a separate set of pigs (n=2) revascularized by VCAB 2 weeks post-implant. Results: Net forward flow distal to the implanted device was 73±15% of native LAD flow. PET demonstrated that the target myocardium was perfused at 85% of that seen in the remote, control myocardium. Device patency rate was 80% (4/5) at 2 weeks in one set of pigs and 83% (5/6) at 4 weeks in a second set of pigs. Histologic analysis showed formation of neointima along the extraventricular segment of the device. Conclusions: This study demonstrates the promise of perfusing ischemic myocardium using a VCAB approach with a device that provides blood flow both proximal and distal to the anastomosis. Patency of the transmyocardial device was encouraging at 2 and 4 weeks and warrants further investigatio

    Criminal Justice and Suicide Outcomes with Indiana's Risk-Based Gun Seizure Law

    Get PDF
    This article examines the application and effectiveness of a 2006 Indiana law designed to prevent gun violence by authorizing police officers to separate firearms from persons who present imminent or future risk of injury to self or others, or display a propensity for violent or emotionally unstable conduct. A court hearing is held to determine ongoing risk in these cases; a judge decides whether to return the seized firearms or retain them for up to five years. The study examines the frequency of criminal arrest as well as suicide outcomes for 395 gun-removal actions in Indiana. Fourteen individuals (3.5%) died from suicide, seven (1.8%) using a firearm. The study population's annualized suicide rate was about 31 times higher than that of the general adult population in Indiana, demonstrating that the law is being applied to a population genuinely at high risk. By extrapolating information on the case fatality rate for different methods of suicide, we calculated that one life was saved for every 10 gun-removal actions, similar to results of a previous study in Connecticut. Perspectives from key stakeholders are also presented along with implications for gun policy reform and implementation

    Energy-Based Plasmonicity Index to Characterize Optical Resonances in Nanostructures

    Get PDF
    Resonances sustained by plasmonic nanoparticles provide extreme electric field confinement and enhancement into the deep subwavelength domain for a plethora of applications. Recent progress in nanofabrication made it even possible to tailor the properties of nanoparticles consisting of only a few hundred atoms. These nanoparticles support both single-particle-like resonances and collective plasmonic charge density oscillations. Prototypical systems sustaining both features are graphene nanoantennas. In pushing the frontier of nanoscience, traditional identification, and classification of such resonances is at stake again. We show that in such nanostructures, the concerted electron cloud oscillation in real space does not necessarily come along with collective dynamics of conduction band electrons in energy space. This unveils an urgent need for a discussion of how a plasmon in nanostructures should be defined. Here, we propose to define it relying on energy space dynamics. The unambiguous identification of the plasmonic nature of a resonance is crucial to find out whether desirable plasmon-assisted features, such as frequency conversion processes, can be expected from a resonance. We elaborate an energy-based figure of merit that classifies the nature of resonances in nanostructures, motivated by tight binding simulations with a toy model consisting of a linear chain of atoms. We apply afterward the proposed figure of merit to a doped hexagonal graphene nanoantenna, which is known to support plasmons in the near infrared and single-particle-like transitions in the visible

    Comparing Union and Nonunion Staff Perceptions of the Higher Education Work Environment

    Full text link
    Evidence of substantial growth in unionization among university noninstructional staff over the past 20 years (Hurd and Woodhead, 1987) and the emergence of a quality movement in higher education linking employee attitudes toward the work environment with increased productivity point to the need for additional research into union and nonunion staff perceptions of the work environment. This paper describes a conceptually oriented, exploratory study of the university work environment as perceived and defined by union and nonunion noninstructional staff.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43620/1/11162_2004_Article_423996.pd

    Molecular Phenotypes Distinguish Patients with Relatively Stable from Progressive Idiopathic Pulmonary Fibrosis (IPF)

    Get PDF
    BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a progressive, chronic interstitial lung disease that is unresponsive to current therapy and often leads to death. However, the rate of disease progression differs among patients. We hypothesized that comparing the gene expression profiles between patients with stable disease and those in which the disease progressed rapidly will lead to biomarker discovery and contribute to the understanding of disease pathogenesis. METHODOLOGY AND PRINCIPAL FINDINGS: To begin to address this hypothesis, we applied Serial Analysis of Gene Expression (SAGE) to generate lung expression profiles from diagnostic surgical lung biopsies in 6 individuals with relatively stable (or slowly progressive) IPF and 6 individuals with progressive IPF (based on changes in DLCO and FVC over 12 months). Our results indicate that this comprehensive lung IPF SAGE transcriptome is distinct from normal lung tissue and other chronic lung diseases. To identify candidate markers of disease progression, we compared the IPF SAGE profiles in stable and progressive disease, and identified a set of 102 transcripts that were at least 5-fold up regulated and a set of 89 transcripts that were at least 5-fold down regulated in the progressive group (P-value</=0.05). The over expressed genes included surfactant protein A1, two members of the MAPK-EGR-1-HSP70 pathway that regulate cigarette-smoke induced inflammation, and Plunc (palate, lung and nasal epithelium associated), a gene not previously implicated in IPF. Interestingly, 26 of the up regulated genes are also increased in lung adenocarcinomas and have low or no expression in normal lung tissue. More importantly, we defined a SAGE molecular expression signature of 134 transcripts that sufficiently distinguished relatively stable from progressive IPF. CONCLUSIONS: These findings indicate that molecular signatures from lung parenchyma at the time of diagnosis could prove helpful in predicting the likelihood of disease progression or possibly understanding the biological activity of IPF

    Ground State Quantum Computation

    Full text link
    We formulate a novel ground state quantum computation approach that requires no unitary evolution of qubits in time: the qubits are fixed in stationary states of the Hamiltonian. This formulation supplies a completely time-independent approach to realizing quantum computers. We give a concrete suggestion for a ground state quantum computer involving linked quantum dots.Comment: 4 pages, 2 figure

    Effects of charge doping and constrained magnetization on the electronic structure of an FeSe monolayer

    Full text link
    The electronic structural properties in the presence of constrained magnetization and a charged background are studied for a monolayer of FeSe in non-magnetic, checkerboard-, and striped-antiferromagnetic (AFM) spin configurations. First principles techniques based on the pseudopotential density functional approach and the local spin density approximation are utilized. Our findings show that the experimentally observed shape of the Fermi surface is best described by the checkerboard AFM spin pattern. To explore the underlying pairing mechanism, we study the evolution of the non-magnetic to the AFM-ordered structures under constrained magnetization. We estimate the strength of electronic coupling to magnetic excitations involving an increase in local moment and, separately, a partial moment transfer from one Fe atom to another. We also show that the charge doping in the FeSe can lead to an increase in the density of states at the Fermi level and possibly produce higher superconducting transition temperatures
    • …
    corecore