43 research outputs found

    Entiminae Schoenherr 1823

    Get PDF
    Fil: Marvaldi, Adriana E.. Instituto Argentino de Investigaciones de las Zonas Áridas. Mendoza; ArgentinaFil: Lanteri, Analía Alicia. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. División Entomología; ArgentinaFil: del Río, María Guadalupe. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. División Entomología; ArgentinaFil: Oberprieler, Rolf G.. CSIRO Entomology. Canberra; Australi

    Mitochondrial humanin peptide acts as a cytoprotective factor in granulosa cell survival

    Get PDF
    Humanin (HN) is a short peptide involved in many biological processes such as apoptosis, cell survival, inflammatory response, and reaction to stressors like oxidative stress, between others. In the ovary, a correct balance between pro- and anti-apoptotic factors is crucial for folliculogenesis. In the follicular atresia, survival or death of granulosa cells is a critical process. The goal of this study was to evaluate the action of HN on granulosa cell fate. To explore endogenous HN function in the ovary, we used a recombinant baculovirus (BV) encoding a short-hairpin RNA targeted to silence HN (shHN). HN downregulation modified ovarian histoarchitecture and increased apoptosis of granulosa cells. HN was also detected in a granulosa tumor cell line (KGN). Transduction of KGN cells with BV-shHN resulted in HN downregulation and increased apoptosis. On the other hand, treatment of KGN cells with exogenous HN increased cell viability and decreased apoptosis. In summary, these findings indicate that HN is a cytoprotective factor in granulosa cells of antral follicles, suggesting that this peptide would be involved in the regulation of folliculogenesis. Also, this peptide is a cytoprotective factor in KGN cells, and therefore, it could be involved in granulosa tumor cell behavior.Fil: Marvaldi, Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Centro de Estudios Farmacológicos y Botánicos. Universidad de Buenos Aires. Facultad de Medicina. Centro de Estudios Farmacológicos y Botánicos; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas; ArgentinaFil: Martin, Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas; ArgentinaFil: Conte, Julia Gaetana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas; ArgentinaFil: Gottardo, María Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas; Argentina. Universidad Nacional de Quilmes; ArgentinaFil: Pidre, Matias Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Biotecnología y Biología Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Biotecnología y Biología Molecular; ArgentinaFil: Imsen, Mercedes. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas; ArgentinaFil: Irizarri, Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas; ArgentinaFil: Manuel, Sharron L.. Northwestern University; Estados UnidosFil: Duncan, Francesca E.. Northwestern University; Estados UnidosFil: Romanowski, Victor. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Biotecnología y Biología Molecular. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Biotecnología y Biología Molecular; ArgentinaFil: Seilicovich, Adriana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas; ArgentinaFil: Jaita, Gabriela Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Biomédicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Biomédicas; Argentin

    The Beetle Tree of Life Reveals that Coleoptera Survived End-Permium Mass Extinction to Diversify During the Cretaceous Terrestrial Revolution

    Get PDF
    Here we present a phylogeny of beetles (Insecta: Coleoptera) based on DNA sequence data from eight nuclear genes, including six single-copy nuclear protein-coding genes, for 367 species representing 172 of 183 extant families. Our results refine existing knowledge of relationships among major groups of beetles. Strepsiptera was confirmed as sister to Coleoptera and each of the suborders of Coleoptera was recovered as monophyletic. Interrelationships among the suborders, namely Polyphaga (Adephaga (Archostemata, Myxophaga)), in our study differ from previous studies. Adephaga comprised two clades corresponding to Hydradephaga and Geadephaga. The series and superfamilies of Polyphaga were mostly monophyletic. The traditional Cucujoidea were recovered in three distantly related clades. Lymexyloidea was recovered within Tenebrionoidea. Several of the series and superfamilies of Polyphaga received moderate to maximal clade support in most analyses, for example Buprestoidea, Chrysomeloidea, Coccinelloidea, Cucujiformia, Curculionoidea, Dascilloidea, Elateroidea, Histeroidea and Hydrophiloidea. However, many of the relationships within Polyphaga lacked compatible resolution under maximum-likelihood and Bayesian inference, and/or lacked consistently strong nodal support. Overall, we recovered slightly younger estimated divergence times than previous studies for most groups of beetles. The ordinal split between Coleoptera and Strepsiptera was estimated to have occurred in the Early Permian. Crown Coleoptera appeared in the Late Permian, and only one or two lineages survived the end-Permian mass extinction, with stem group representatives of all four suborders appearing by the end of the Triassic. The basal split in Polyphaga was estimated to have occurred in the Triassic, with the stem groups of most series and superfamilies originating during the Triassic or Jurassic. Most extant families of beetles were estimated to have Cretaceous origins. Overall, Coleoptera experienced an increase in diversification rate compared to the rest of Neuropteroidea. Furthermore, 10 family-level clades, all in suborder Polyphaga, were identified as having experienced significant increases in diversification rate. These include most beetle species with phytophagous habits, but also several groups not typically or primarily associated with plants. Most of these groups originated in the Cretaceous, which is also when a majority of the most species-rich beetle families first appeared. An additional 12 clades showed evidence for significant decreases in diversification rate. These clades are species-poor in the Modern fauna, but collectively exhibit diverse trophic habits. The apparent success of beetles, as measured by species numbers, may result from their associations with widespread and diverse substrates – especially plants, but also including fungi, wood and leaf litter – but what facilitated these associations in the first place or has allowed these associations to flourish likely varies within and between lineages. Our results provide a uniquely well-resolved temporal and phylogenetic framework for studying patterns of innovation and diversification in Coleoptera, and a foundation for further sampling and resolution of the beetle tree of life

    Key to larvae of the South American subfamilies of weevils (Coleoptera, Curculionoidea) Clave para larvas de las subfamilias sudamericanas de gorgojos (Coleoptera, Curculionoidea)

    No full text
    The weevils (Coleoptera: Curculionoidea) from South America are classsified into seven families and 28 subfamilies as follows: Nemonychidae (Rhinorhynchinae), Anthribidae (Anthribinae), Belidae (Belinae and Oxycoryninae), Attelabidae (Attelabinae and Rhynchitinae), Brentidae (Apioninae and Brentinae), Caridae (Carinae) and Curculionidae (Erirhininae, Dryophthorinae, Entiminae, Aterpinae, Gonipterinae, Rhythirrininae, Thecesterninae, Eugnominae, Hyperinae, Curculioninae, Cryptorhynchinae, Mesoptiliinae (= Magdalidinae), Molytinae, Baridinae, Lixinae, Conoderinae (= Zygopinae), Cossoninae, Scolytinae and Platypodinae). A dichotomous key for the larval stage is provided for identification of the families and subfamilies of Curculionoidea present in South America. The key is based on external morphological characters and contains data on larval feeding habitsLos gorgojos (Coleoptera: Curculionoidea) de Sudamérica están clasificados en siete familias y 28 subfamilias como se muestra a continuación: Nemonychidae (Rhinorhynchinae), Anthribidae (Anthribinae), Belidae (Belinae y Oxycoryninae), Attelabidae (Attelabinae y Rhynchitinae), Brentidae (Apioninae y Brentinae), Caridae (Carinae) y Curculionidae (Erirhininae, Dryophthorinae, Entiminae, Aterpinae, Gonipterinae, Rhythirrininae, Thecesterninae, Eugnominae, Hyperinae, Curculioninae, Cryptorhynchinae, Mesoptiliinae (= Magdalidinae), Molytinae, Baridinae, Lixinae, Conoderinae (= Zygopinae), Cossoninae, Scolytinae y Platypodinae). Se brinda una clave dicotómica para el estado de larva de Curculionoidea en Sudamérica, para su determinación a nivel de familias y subfamilias. La clave está basada sobre caracteres morfológicos externos y se presentan además datos de hábitos alimentario

    Figs. 12–16. Ocladius dianthi, larva. 12 in Morphologic Characters Of The Immature Stages Of Ocladius Dianthi Marshall (Coleoptera: Curculionidae: Ocladiinae), With Phylogenetic Implications

    No full text
    Figs. 12–16. Ocladius dianthi, larva. 12) TI­III, AI, one side, dorsolateral; 13) detail of cuticle; 14) AIV, one side, dorsolateral and ventral; 15) AVII,VIII, one side, dorsolateral; 16) AIX,X, caudal. Scales, 12, 14–16 = 0.5 mm; 13 = 0.1 mm.Published as part of <i>Marvaldi, Adriana E., 2000, Morphologic Characters Of The Immature Stages Of Ocladius Dianthi Marshall (Coleoptera: Curculionidae: Ocladiinae), With Phylogenetic Implications, pp. 325-331 in The Coleopterists Bulletin 54 (3)</i> on page 329, DOI: 10.1649/0010-065X(2000)054[0325:MCOTIS]2.0.CO;2, <a href="http://zenodo.org/record/10101904">http://zenodo.org/record/10101904</a&gt

    Figs. 1–7. Ocladius dianthi, larva. 1 in Morphologic Characters Of The Immature Stages Of Ocladius Dianthi Marshall (Coleoptera: Curculionidae: Ocladiinae), With Phylogenetic Implications

    No full text
    Figs. 1–7. Ocladius dianthi, larva. 1) habitus, lateral; 2) head, dorsal; 3) head, ventral; 4) antenna; 5) clypeus and labrum; 6) epipharynx; 7) mandible. Scales, 1 = 1 mm; 2, 3 = 0.5 mm; 4–7 = 0.1 mm.Published as part of <i>Marvaldi, Adriana E., 2000, Morphologic Characters Of The Immature Stages Of Ocladius Dianthi Marshall (Coleoptera: Curculionidae: Ocladiinae), With Phylogenetic Implications, pp. 325-331 in The Coleopterists Bulletin 54 (3)</i> on page 327, DOI: 10.1649/0010-065X(2000)054[0325:MCOTIS]2.0.CO;2, <a href="http://zenodo.org/record/10101904">http://zenodo.org/record/10101904</a&gt

    Figs. 17–18 in Morphologic Characters Of The Immature Stages Of Ocladius Dianthi Marshall (Coleoptera: Curculionidae: Ocladiinae), With Phylogenetic Implications

    No full text
    Figs. 17–18. Ocladius dianthi, pupa, habitus. 17) ventral; 18) dorsal. Scale = 1 mm.Published as part of <i>Marvaldi, Adriana E., 2000, Morphologic Characters Of The Immature Stages Of Ocladius Dianthi Marshall (Coleoptera: Curculionidae: Ocladiinae), With Phylogenetic Implications, pp. 325-331 in The Coleopterists Bulletin 54 (3)</i> on page 330, DOI: 10.1649/0010-065X(2000)054[0325:MCOTIS]2.0.CO;2, <a href="http://zenodo.org/record/10101904">http://zenodo.org/record/10101904</a&gt

    Figs. 8–11. Ocladius dianthi, larva. 8 in Morphologic Characters Of The Immature Stages Of Ocladius Dianthi Marshall (Coleoptera: Curculionidae: Ocladiinae), With Phylogenetic Implications

    No full text
    Figs. 8–11. Ocladius dianthi, larva. 8) maxilla and labium, ventral; 9) maxilla, dorsal; 10) spiracles (a, thorax; b, AIV; c, AVIII); 11) pedal area. Scales = 0.1 mm.Published as part of <i>Marvaldi, Adriana E., 2000, Morphologic Characters Of The Immature Stages Of Ocladius Dianthi Marshall (Coleoptera: Curculionidae: Ocladiinae), With Phylogenetic Implications, pp. 325-331 in The Coleopterists Bulletin 54 (3)</i> on page 328, DOI: 10.1649/0010-065X(2000)054[0325:MCOTIS]2.0.CO;2, <a href="http://zenodo.org/record/10101904">http://zenodo.org/record/10101904</a&gt
    corecore