345 research outputs found

    Beam-Pattern Assisted Low-Complexity Beam Alignment for Fixed Wireless mmWave xHaul

    Get PDF
    This paper presents the design of two-stage beam alignment methods employing a hybrid analog-digital antenna array and exploiting the beam pattern in a point-to-point millimeter-wave (mmWave) radio for mmWave massive multiple-input multiple-output systems. We investigate an antenna deactivating approach that generates wider beams at the coarse alignment stage and exploit the theoretical beam pattern at the fine alignment stage. Our numerical results show that the proposed two-stage methods can achieve a better beam alignment than existing exhaustive methods and avail measurements/complexity reductions by tuning key parameters governing the alignment performance

    Ground-State Properties of Extended Two-Channel Kondo Model

    Full text link
    Ground-state properties are examined for an extended two-channel Kondo model where the Hilbert space of the localized states is extended to include a singlet state in addition to the doublet states. By means of zero-th order variational wavefunctions with different symmetries, which are associated with the non-Fermi-liquid and the Fermi-liquid ground states, we demonstrate that the channel exchange coupling via the localized singlet state stabilizes the Fermi-liquid wavefunction. The ground-state phase diagrams, which are in qualitative agreement with the previous study performed by Koga and Shiba, are obtained. The comparison to the structure of the resultant wavefunctions suggests that a unique non-Fermi-liquid (Fermi-liquid) fixed point exists, irrespective of the localized ground state.Comment: 4 pages(3 figures), LaTeX, appear in J. Phys. Soc. Jpn Vol. 67 No.

    Electromagnetic lateral control system of floating strip

    Get PDF
    Strip floating system is effective to avoid strip wrinkles and defects caused by roll contact, and to keep high quality of steel strip in the continuous processing lines.In development of the floating system, challenging point is its controller against lateral instability of the floating strip supported by air cushion devices. We developed the electromagnetic control system, whose response is much quicker than that of the conventional center position control (CPC) system using rollers. This paper shows validity of our new control system

    Two TPX2-Dependent Switches Control the Activity of Aurora A

    Get PDF
    Aurora A is an important oncogenic kinase for mitotic spindle assembly and a potentially attractive target for human cancers. Its activation could be regulated by ATP cycle and its activator TPX2. To understand the activation mechanism of Aurora A, a series of 20 ns molecular dynamics (MD) simulations were performed on both the wild-type kinase and its mutants. Analyzing the three dynamic trajectories (Aurora A-ATP, Aurora A-ADP, and Aurora A-ADP-TPX2) at the residue level, for the first time we find two TPX2-dependent switches, i.e., switch-1 (Lys-143) and switch-2 (Arg-180), which are tightly associated with Aurora A activation. In the absence of TPX2, Lys-143 exhibits a “closed” state, and becomes hydrogen-bonded to ADP. Once TPX2 binding occurs, switch-1 is forced to “open” the binding site, thus pulling ADP away from Aurora A. Without facilitation of TPX2, switch-2 exits in an “open” conformation which accompanies the outward-flipping movement of P·Thr288 (in an inactive conformation), leading to the crucial phosphothreonine exposed and accessible for deactivation. However, with the binding of TPX2, switch-2 is forced to undergo a “closed” movement, thus capturing P·Thr288 into a buried position and locking its active conformation. Analysis of two Aurora A (K143A and R180A) mutants for the two switches further verifies their functionality and reliability in controlling Aurora activity. Our systems therefore suggest two switches determining Aurora A activation, which are important for the development of aurora kinase inhibitors

    Two TPX2-Dependent Switches Control the Activity of Aurora A

    Get PDF
    Aurora A is an important oncogenic kinase for mitotic spindle assembly and a potentially attractive target for human cancers. Its activation could be regulated by ATP cycle and its activator TPX2. To understand the activation mechanism of Aurora A, a series of 20 ns molecular dynamics (MD) simulations were performed on both the wild-type kinase and its mutants. Analyzing the three dynamic trajectories (Aurora A-ATP, Aurora A-ADP, and Aurora A-ADP-TPX2) at the residue level, for the first time we find two TPX2-dependent switches, i.e., switch-1 (Lys-143) and switch-2 (Arg-180), which are tightly associated with Aurora A activation. In the absence of TPX2, Lys-143 exhibits a “closed” state, and becomes hydrogen-bonded to ADP. Once TPX2 binding occurs, switch-1 is forced to “open” the binding site, thus pulling ADP away from Aurora A. Without facilitation of TPX2, switch-2 exits in an “open” conformation which accompanies the outward-flipping movement of P·Thr288 (in an inactive conformation), leading to the crucial phosphothreonine exposed and accessible for deactivation. However, with the binding of TPX2, switch-2 is forced to undergo a “closed” movement, thus capturing P·Thr288 into a buried position and locking its active conformation. Analysis of two Aurora A (K143A and R180A) mutants for the two switches further verifies their functionality and reliability in controlling Aurora activity. Our systems therefore suggest two switches determining Aurora A activation, which are important for the development of aurora kinase inhibitors

    Reversible and Irreversible Interactions of Poly(3-hexylthiophene) with Oxygen Studied by Spin-Sensitive Methods

    Full text link
    Understanding of degradation mechanisms in polymer:fullerene bulk-heterojunctions on the microscopic level aimed at improving their intrinsic stability is crucial for the breakthrough of organic photovoltaics. These materials are vulnerable to exposure to light and/or oxygen, hence they involve electronic excitations. To unambiguously probe the excited states of various multiplicities and their reactions with oxygen, we applied combined magneto-optical methods based on multifrequency (9 and 275 GHz) electron paramagnetic resonance (EPR), photoluminescence (PL), and PL-detected magnetic resonance (PLDMR) to the conjugated polymer poly(3-hexylthiophene) (P3HT) and polymer:fullerene bulk heterojunctions (P3HT:PCBM; PCBM = [6,6]-phenyl-C61-butyric acid methyl ester). We identified two distinct photochemical reaction routes, one being fully reversible and related to the formation of polymer:oxygen charge transfer complexes, the other one, irreversible, being related to the formation of singlet oxygen under participation of bound triplet excitons on the polymer chain. With respect to the blends, we discuss the protective effect of the methanofullerenes on the conjugated polymer bypassing the triplet exciton generation

    Status and prospects of liver cirrhosis treatment by using bone marrow-derived cells and mesenchymal cells

    Get PDF
    In 2003, we started autologous bone marrow cell infusion (ABMi) therapy for treating liver cirrhosis. ABMi therapy uses 400 mL of autologous bone marrow obtained under general anesthesia and infused mononuclear cells from the peripheral vein. The clinical study expanded and we treated liver cirrhosis induced by HCV and HBV infection and alcohol consumption. We found that the ABMi therapy was effective for cirrhosis patients and now we are treating patients with combined HIV and HCV infection and with metabolic syndrome-induced liver cirrhosis. Currently, to substantiate our findings that liver cirrhosis can be successfully treated by the ABMi therapy, we are conducting randomized multicenter clinical studies designated "Advanced medical technology B" for HCV-related liver cirrhosis in Japan. On the basis of our clinical study, we developed a proof-of-concept showing that infusion of bone marrow cells (BMCs) improved liver fibrosis and sequentially activated proliferation of hepatic progenitor cells and hepatocytes, further promoting restoration of liver functions. To treat patients with severe forms of liver cirrhosis, we continued translational research to develop less invasive therapies by using mesenchymal stem cells derived from bone marrow. We obtained a small quantity of BMCs under local anesthesia and expanded them into mesenchymal stem cells that will then be used for treating cirrhosis. In this review, we present our strategy to apply the results of our laboratory research to clinical studies. Copyright © 2014, Mary Ann Liebert, Inc

    Top-down constraints on atmospheric mercury emissions and implications for global biogeochemical cycling

    Get PDF
    We perform global-scale inverse modeling to constrain present-day atmospheric mercury emissions and relevant physiochemical parameters in the GEOS-Chem chemical transport model. We use Bayesian inversion methods combining simulations with GEOS-Chem and ground-based Hg[superscript 0] observations from regional monitoring networks and individual sites in recent years. Using optimized emissions/parameters, GEOS-Chem better reproduces these ground-based observations and also matches regional over-water Hg[superscript 0] and wet deposition measurements. The optimized global mercury emission to the atmosphere is ~ 5.8 Gg yr[superscript −1]. The ocean accounts for 3.2 Gg yr[superscript −1] (55% of the total), and the terrestrial ecosystem is neither a net source nor a net sink of Hg[superscript 0]. The optimized Asian anthropogenic emission of Hg[superscript 0] (gas elemental mercury) is 650–1770 Mg yr[superscript −1], higher than its bottom-up estimates (550–800 Mg yr[superscript −1]). The ocean parameter inversions suggest that dark oxidation of aqueous elemental mercury is faster, and less mercury is removed from the mixed layer through particle sinking, when compared with current simulations. Parameter changes affect the simulated global ocean mercury budget, particularly mass exchange between the mixed layer and subsurface waters. Based on our inversion results, we re-evaluate the long-term global biogeochemical cycle of mercury, and show that legacy mercury becomes more likely to reside in the terrestrial ecosystem than in the ocean. We estimate that primary anthropogenic mercury contributes up to 23 % of present-day atmospheric deposition.National Science Foundation (U.S.). Atmospheric Chemistry Program (1053648

    Analysis of Aurora kinase A expression in CD34+ blast cells isolated from patients with myelodysplastic syndromes and acute myeloid leukemia

    Get PDF
    Aurora kinase A, also known as aurora A, is a serine/threonine kinase that plays critical roles in mitosis entry, chromosome alignment, segregation, and cytokinesis. Overexpression of aurora A has been observed in many solid tumors and some hematopoietic neoplasms, but little is known about its expression in myeloid diseases. Because cytogenetic abnormalities play an essential role in the pathogenesis of myeloid malignancies, we hypothesized that aurora A deregulation may be involved in myelodysplastic syndromes and acute myeloid leukemia and contribute to the chromosomal instability observed in these diseases. We assessed aurora A mRNA levels in CD34+ bone marrow blasts from nine patients with acute myeloid leukemia, 20 patients with myelodysplastic syndromes, and five normal patients serving as controls. CD34+ blasts were isolated from bone marrow aspirate specimens using magnetic activated cell separation technology. RNA was extracted from purified CD34+ cells, and quantitative real-time reverse transcriptase polymerase chain reaction for aurora A was performed. Immunocytochemical analyses for total aurora A, phosphorylated aurora A, Ki-67, and activated caspase 3 were performed on cytospin slides made from purified CD34+ cells in myelodysplastic syndrome patients using standard methods. Aurora A mRNA and protein levels were correlated, as was aurora A mRNA level, with blast counts, cytogenetic abnormalities, and International Prognostic Scoring System score. We found that CD34+ cells in myelodysplastic syndromes and acute myeloid leukemia expressed aurora A at significantly higher levels (P = 0.01 and P = 0.01, respectively) than normal CD34+ cells. Aurora A mRNA levels correlated with total and phosphorylated protein levels (P = 0.0002 and P = 0.02, respectively). No significant correlation was found between aurora A mRNA level and blast count, blast viability, cytogenetic abnormalities, or the International Prognostic Scoring System score in patients with myelodysplastic syndromes. We conclude that aurora A is up-regulated in CD34+ blasts from myeloid neoplasms

    Constitutive Phosphorylation of Aurora-A on Ser51 Induces Its Stabilization and Consequent Overexpression in Cancer

    Get PDF
    The serine/threonine kinase Aurora-A (Aur-A) is a proto-oncoprotein overexpressed in a wide range of human cancers. Overexpression of Aur-A is thought to be caused by gene amplification or mRNA overexpression. However, recent evidence revealed that the discrepancies between amplification of Aur-A and overexpression rates of Aur-A mRNA were observed in breast cancer, gastric cancer, hepatocellular carcinoma, and ovarian cancer. We found that aggressive head and neck cancers exhibited overexpression and stabilization of Aur-A protein without gene amplification or mRNA overexpression. Here we tested the hypothesis that aberration of the protein destruction system induces accumulation and consequently overexpression of Aur-A in cancer.Aur-A protein was ubiquitinylated by APC(Cdh1) and consequently degraded when cells exited mitosis, and phosphorylation of Aur-A on Ser51 was observed during mitosis. Phosphorylation of Aur-A on Ser51 inhibited its APC(Cdh1)-mediated ubiquitylation and consequent degradation. Interestingly, constitutive phosphorylation on Ser51 was observed in head and neck cancer cells with protein overexpression and stabilization. Indeed, phosphorylation on Ser51 was observed in head and neck cancer tissues with Aur-A protein overexpression. Moreover, an Aur-A Ser51 phospho-mimetic mutant displayed stabilization of protein during cell cycle progression and enhanced ability to cell transformation.Broadly, this study identifies a new mode of Aur-A overexpression in cancer through phosphorylation-dependent inhibition of its proteolysis in addition to gene amplification and mRNA overexpression. We suggest that the inhibition of Aur-A phosphorylation can represent a novel way to decrease Aur-A levels in cancer therapy
    corecore