329 research outputs found

    Special issue: recent advances in Cambrian to modern cephalopod research I

    Full text link
    In September 2014, the 9th International Symposium Cephalopods—Present and Past was held at the Universitz of Zurich in combination with the 5th International Coleoid Symposium. Here, give a short account of these two events

    Observation of Entangled States of a Fully Controlled 20-Qubit System

    Full text link
    We generate and characterise entangled states of a register of 20 individually controlled qubits, where each qubit is encoded into the electronic state of a trapped atomic ion. Entanglement is generated amongst the qubits during the out-of-equilibrium dynamics of an Ising-type Hamiltonian, engineered via laser fields. Since the qubit-qubit interactions decay with distance, entanglement is generated at early times predominantly between neighbouring groups of qubits. We characterise entanglement between these groups by designing and applying witnesses for genuine multipartite entanglement. Our results show that, during the dynamical evolution, all neighbouring qubit pairs, triplets, most quadruplets, and some quintuplets simultaneously develop genuine multipartite entanglement. Witnessing genuine multipartite entanglement in larger groups of qubits in our system remains an open challenge.Comment: 20 pages, 4 figure

    Mosquito repellents for malaria prevention

    Get PDF
    Background Malaria is an important cause of illness and death across endemic regions. Considerable success against malaria has been achieved within the past decade mainly through long-lasting insecticide-treated nets (LLINs). However, elimination of the disease is proving difficult as current control methods do not protect against mosquitoes biting outdoors and when people are active. Repellents may provide a personal protection solution during these times. Objectives To assess the impact of topical repellents, insecticide-treated clothing, and spatial repellents on malaria transmission. Search methods We searched the following databases up to 26 June 2017: the Cochrane Infectious Diseases Group Specialized Register; the Central Register of Controlled Trials (CENTRAL), published in the Cochrane Library; MEDLINE; Embase; US AFPMB; CAB Abstracts; and LILACS. We also searched trial registration platforms and conference proceedings; and contacted organizations and companies for ongoing and unpublished trials. Selection criteria We included randomized controlled trials (RCTs) and cluster-randomized controlled trials of topical repellents proven to repel mosquitoes; permethrin-treated clothing; and spatial repellents such as mosquito coils. We included trials that investigated the use of repellents with or without LLINs, referred to as insecticide-treated nets. Data collection and analysis Two review authors independently reviewed trials for inclusion, extracted the data, and assessed the risk of bias. A third review author resolved any discrepancies. We analysed data by conducting meta-analysis and stratified by whether the trials had included LLINs. We combined results from cRCTs with individually RCTs by adjusting for clustering and presented results using forest plots. We used GRADE to assess the certainty of the evidence. Main results Eight cRCTs and two RCTs met the inclusion criteria. Six trials investigated topical repellents, two trials investigated insecticide-treated clothing, and two trials investigated spatial repellents. Topical repellents Six RCTS, five of them cluster-randomized, investigated topical repellents involving residents of malaria-endemic regions. Four trials used topical repellents in combination with nets, but two trials undertaken in displaced populations used topical repellents alone. It is unclear if topical repellents can prevent clinical malaria (RR 0.65, 95% CI 0.4 to 1.07, very low certainty evidence) or malaria infection (RR 0.84, 95% CI 0.64 to 1.12, low-certainty evidence) caused by P. falciparum. It is also unclear if there is any protection against clinical cases of P. vivax (RR 1.32, 95% CI 0.99 to 1.76, low-certainty evidence) or incidence of infections (RR 1.07, 95% CI 0.80 to 1.41, low-certainty evidence). Subgroup analysis of trials including insecticide-treated nets did not show a protective effect of topical repellents against malaria. Only two studies did not include insecticide-treated nets, and they measured different outcomes; one reported a protective effect against clinical cases of P. falciparum (RR 0.40, 95% CI 0.23 to 0.71); but the other study measured no protective effect against malaria infection incidence caused by either P. falciparum or P. vivax. Insecticide-treated clothing Insecticide-treated clothing were investigated in trials conducted in refugee camps in Pakistan and amongst military based in the Colombian Amazon. Neither study provided participants with insecticide-treated nets. In the absence of nets, treated clothing may reduce the incidence of clinical malaria caused by P. falciparum by approximately 50% (RR 0.49, 95% CI 0.29 to 0.83, low-certainty evidence) and P. vivax (RR 0.64, 95% CI 0.40 to 1.01, low-certainty evidence). Spatial repellents Two cluster-randomized RCTs investigated mosquito coils for malaria prevention. We do not know the effect of spatial repellents on malaria prevention (RR 0.24, 95% CI 0.03 to 1.72, very low certainty evidence). There was large heterogeneity between studies and one study had high risk of bias. Authors' conclusions There is insufficient evidence to conclude topical or spatial repellents can prevent malaria. There is a need for better designed trials to generate higher certainty of evidence before well-informed recommendations can be made. Adherence to daily compliance remains a major limitation. Insecticide-treated clothing may reduce risk of malaria infection in the absence of insecticide-treated nets; further studies on insecticide-treated clothing in the general population should be done to broaden the applicability of the results

    Ghost in the Ising machine

    Full text link
    Coupled nonlinear systems have promise for parallel computing architectures. En route to realizing complex networks for Ising machines, we report an experimental and theoretical study of two coupled parametric resonators (parametrons). The coupling severely impacts the bifurcation topology and the number of available solutions of the system; in part of the stability diagram, we can access fewer solutions than expected. When applying noise to probe the stability of the states, we find that the switching rates and the phase-space trajectories of the system depend on the detuning in surprising ways. We present a theoretical framework that heralds the existence of 'ghost bifurcations'. These bifurcations involve only unstable solutions and lead to avoided zones in phase space. The emergence of such ghost bifurcations is an important feature of parametron networks that can influence their application for parallel logic operations

    Manipulating and squeezing the photon local density of states with plasmonic nanoparticle networks

    Get PDF
    International audienceIn this Brief Report, we show that when interconnected networks of gold particles are deposited onto a clean planar surface, they strongly modify the photonic local density of states LDOS in the immediate proximity of the self-assembled nanoparticles. They represent unique architectures for the subwavelength patterning of initially flat photonic LDOS. Moreover, we show that their local spectral signatures are well suited for the generation of sites able to enhance molecular fluorescence intensity

    The Iowa Homemaker vol.39A, no.1

    Get PDF
    Follow an Oriental Formula, Marty Keeney, page 4 Planning + Imagination = Shower Success, Mary Jacobs Jensen, page 5 Gridiron Greats, Gail Devens, page 6 About Discount Houses, Carol Shellenbarger, page 7 Hem Yourself a Harem, Marcena Christian, page 8 Facial Focus, Marilyn Bratten, page 10 Does Your Equipment Measure Up?, Helen Rank, page 11 What’s Going On?, page 12 Inside Story, page 1

    Accuracy and Consistency of Space-based Vegetation Height Maps for Forest Dynamics in Alpine Terrain

    Full text link
    Monitoring and understanding forest dynamics is essential for environmental conservation and management. This is why the Swiss National Forest Inventory (NFI) provides countrywide vegetation height maps at a spatial resolution of 0.5 m. Its long update time of 6 years, however, limits the temporal analysis of forest dynamics. This can be improved by using spaceborne remote sensing and deep learning to generate large-scale vegetation height maps in a cost-effective way. In this paper, we present an in-depth analysis of these methods for operational application in Switzerland. We generate annual, countrywide vegetation height maps at a 10-meter ground sampling distance for the years 2017 to 2020 based on Sentinel-2 satellite imagery. In comparison to previous works, we conduct a large-scale and detailed stratified analysis against a precise Airborne Laser Scanning reference dataset. This stratified analysis reveals a close relationship between the model accuracy and the topology, especially slope and aspect. We assess the potential of deep learning-derived height maps for change detection and find that these maps can indicate changes as small as 250 m2m^2. Larger-scale changes caused by a winter storm are detected with an F1-score of 0.77. Our results demonstrate that vegetation height maps computed from satellite imagery with deep learning are a valuable, complementary, cost-effective source of evidence to increase the temporal resolution for national forest assessments
    • …
    corecore