788 research outputs found
Using Student-Centric Technology for Educational Change
Book review ofΓÇ£Disrupting Class: How Disruptive Innovation Will Change the Way the World LearnsΓÇ¥ by Clayton M. Christensen, Curtis W. Johnson, and Michael B. Hor
Length functions on currents and applications to dynamics and counting
The aim of this (mostly expository) article is twofold. We first explore a
variety of length functions on the space of currents, and we survey recent work
regarding applications of length functions to counting problems. Secondly, we
use length functions to provide a proof of a folklore theorem which states that
pseudo-Anosov homeomorphisms of closed hyperbolic surfaces act on the space of
projective geodesic currents with uniform north-south dynamics.Comment: 35pp, 2 figures, comments welcome! Second version: minor corrections.
To appear as a chapter in the forthcoming book "In the tradition of Thurston"
edited by V. Alberge, K. Ohshika and A. Papadopoulo
The Neuron Phenotype Ontology: A FAIR Approach to Proposing and Classifying Neuronal Types
The challenge of defining and cataloging the building blocks of the brain requires a standardized approach to naming neurons and organizing knowledge about their properties. The US Brain Initiative Cell Census Network, Human Cell Atlas, Blue Brain Project, and others are generating vast amounts of data and characterizing large numbers of neurons throughout the nervous system. The neuroscientific literature contains many neuron names (e.g. parvalbumin-positive interneuron or layer 5 pyramidal cell) that are commonly used and generally accepted. However, it is often unclear how such common usage types relate to many evidence-based types that are proposed based on the results of new techniques. Further, comparing different types across labs remains a significant challenge. Here, we propose an interoperable knowledge representation, the Neuron Phenotype Ontology (NPO), that provides a standardized and automatable approach for naming cell types and normalizing their constituent phenotypes using identifiers from community ontologies as a common language. The NPO provides a framework for systematically organizing knowledge about cellular properties and enables interoperability with existing neuron naming schemes. We evaluate the NPO by populating a knowledge base with three independent cortical neuron classifications derived from published data sets that describe neurons according to molecular, morphological, electrophysiological, and synaptic properties. Competency queries to this knowledge base demonstrate that the NPO knowledge model enables interoperability between the three test cases and neuron names commonly used in the literature
Warming and acidification threaten glass sponge Aphrocallistes vastus pumping and reef formation
The glass sponge Aphrocallistes vastus contributes to the formation of large reefs unique to the Northeast Pacific Ocean. These habitats have tremendous filtration capacity that facilitates flow of carbon between trophic levels. Their sensitivity and resilience to climate change, and thus persistence in the Anthropocene, is unknown. Here we show that ocean acidification and warming, alone and in combination have significant adverse effects on pumping capacity, contribute to irreversible tissue withdrawal, and weaken skeletal strength and stiffness of A. vastus. Within one month sponges exposed to warming (including combined treatment) ceased pumping (50–60%) and exhibited tissue withdrawal (10–25%). Thermal and acidification stress significantly reduced skeletal stiffness, and warming weakened it, potentially curtailing reef formation. Environmental data suggests conditions causing irreversible damage are possible in the field at +0.5 °C above current conditions, indicating that ongoing climate change is a serious and immediate threat to A. vastus, reef dependent communities, and potentially other glass sponges
- …