756 research outputs found

    Using Student-Centric Technology for Educational Change

    Get PDF
    Book review ofΓÇ£Disrupting Class: How Disruptive Innovation Will Change the Way the World LearnsΓÇ¥ by Clayton M. Christensen, Curtis W. Johnson, and Michael B. Hor

    Of Power and Purpose

    Get PDF

    An ontological approach to describing neurons and their relationships

    Get PDF
    The advancement of neuroscience, perhaps one of the most information rich disciplines of all the life sciences, requires basic frameworks for organizing the vast amounts of data generated by the research community to promote novel insights and integrated understanding. Since Cajal, the neuron remains a fundamental unit of the nervous system, yet even with the explosion of information technology, we still have few comprehensive or systematic strategies for aggregating cell-level knowledge. Progress toward this goal is hampered by the multiplicity of names for cells and by lack of a consensus on the criteria for defining neuron types. However, through umbrella projects like the Neuroscience Information Framework (NIF) and the International Neuroinformatics Coordinating Facility (INCF), we have the opportunity to propose and implement an informatics infrastructure for establishing common tools and approaches to describe neurons through a standard terminology for nerve cells and a database (a Neuron Registry) where these descriptions can be deposited and compared. This article provides an overview of the problem and outlines a solution approach utilizing ontological characterizations. Based on illustrative implementation examples, we also discuss the need for consensus criteria to be adopted by the research community, and considerations on future developments. A scalable repository of neuron types will provide researchers with a resource that materially contributes to the advancement of neuroscience

    Length functions on currents and applications to dynamics and counting

    Full text link
    The aim of this (mostly expository) article is twofold. We first explore a variety of length functions on the space of currents, and we survey recent work regarding applications of length functions to counting problems. Secondly, we use length functions to provide a proof of a folklore theorem which states that pseudo-Anosov homeomorphisms of closed hyperbolic surfaces act on the space of projective geodesic currents with uniform north-south dynamics.Comment: 35pp, 2 figures, comments welcome! Second version: minor corrections. To appear as a chapter in the forthcoming book "In the tradition of Thurston" edited by V. Alberge, K. Ohshika and A. Papadopoulo

    Warming and acidification threaten glass sponge Aphrocallistes vastus pumping and reef formation

    Get PDF
    The glass sponge Aphrocallistes vastus contributes to the formation of large reefs unique to the Northeast Pacific Ocean. These habitats have tremendous filtration capacity that facilitates flow of carbon between trophic levels. Their sensitivity and resilience to climate change, and thus persistence in the Anthropocene, is unknown. Here we show that ocean acidification and warming, alone and in combination have significant adverse effects on pumping capacity, contribute to irreversible tissue withdrawal, and weaken skeletal strength and stiffness of A. vastus. Within one month sponges exposed to warming (including combined treatment) ceased pumping (50–60%) and exhibited tissue withdrawal (10–25%). Thermal and acidification stress significantly reduced skeletal stiffness, and warming weakened it, potentially curtailing reef formation. Environmental data suggests conditions causing irreversible damage are possible in the field at +0.5 °C above current conditions, indicating that ongoing climate change is a serious and immediate threat to A. vastus, reef dependent communities, and potentially other glass sponges
    corecore