90 research outputs found

    Precision X-ray spectroscopy of kaonic atoms as a probe of low-energy kaon-nucleus interaction

    Full text link
    In the exotic atoms where one atomic 1s1s electron is replaced by a KK^{-}, the strong interaction between the KK^{-} and the nucleus introduces an energy shift and broadening of the low-lying kaonic atomic levels which are determined by only the electromagnetic interaction. By performing X-ray spectroscopy for Z=1,2 kaonic atoms, the SIDDHARTA experiment determined with high precision the shift and width for the 1s1s state of KpK^{-}p and the 2p2p state of kaonic helium-3 and kaonic helium-4. These results provided unique information of the kaon-nucleus interaction in the low energy limit.Comment: 4 pages, 1 figure, proceedings for oral presentation at the ICNFP2015 conference, Kolymbari, Cret

    First measurement of kaonic helium-3 X-rays

    Get PDF
    The first observation of the kaonic 3He 3d - 2p transition was made using slow K- mesons stopped in a gaseous 3He target. The kaonic atom X-rays were detected with large-area silicon drift detectors using the timing information of the K+K- pairs of phi-meson decays produced by the DAFNE e+e- collider. The strong interaction shift of the kaonic 3He 2p state was determined to be -2+-2 (stat)+-4 (syst) eV.Comment: Accepted for publication in Phys. Lett.

    A New Measurement of Kaonic Hydrogen X rays

    Full text link
    The KˉN\bar{K}N system at threshold is a sensitive testing ground for low energy QCD, especially for the explicit chiral symmetry breaking. Therefore, we have measured the KK-series x rays of kaonic hydrogen atoms at the DAΦ\PhiNE electron-positron collider of Laboratori Nazionali di Frascati, and have determined the most precise values of the strong-interaction energy-level shift and width of the 1s1s atomic state. As x-ray detectors, we used large-area silicon drift detectors having excellent energy and timing resolution, which were developed especially for the SIDDHARTA experiment. The shift and width were determined to be ϵ1s=283±36±6(syst)\epsilon_{1s} = -283 \pm 36 \pm 6 {(syst)} eV and Γ1s=541±89(stat)±22(syst)\Gamma_{1s} = 541 \pm 89 {(stat)} \pm 22 {(syst)} eV, respectively. The new values will provide vital constraints on the theoretical description of the low-energy KˉN\bar{K}N interaction.Comment: 5 figures, submitted to Physics Letters

    Underground tests of quantum mechanics. Whispers in the cosmic silence?

    Get PDF
    By performing X-rays measurements in the "cosmic silence" of the underground laboratory of Gran Sasso, LNGS-INFN, we test a basic principle of quantum mechanics: the Pauli Exclusion Principle (PEP), for electrons. We present the achieved results of the VIP experiment and the ongoing VIP2 measurement aiming to gain two orders of magnitude improvement in testing PEP. We also use a similar experimental technique to search for radiation (X and gamma) predicted by continuous spontaneous localization models, which aim to solve the "measurement problem"

    X rays on quantum mechanics: Pauli Exclusion Principle and collapse models at test

    Get PDF
    In the last decades huge theoretical effort was devoted to the development of consistent theoretical models, aiming to solve the so-called \u201cmeasurement problem\u201d. Among these, the Dynamical Reduction Models possess the unique characteristic to be experimentally testable, thus enabling to set experimental upper bounds on the reduction rate parameter \u3bb characterizing these models. By analysing the X-ray spectrum emitted by an isolated slab of Germanium, we set the most stringent limit on the \u3bb parameter up to date

    Low-energy kaon-nucleon/nuclei interaction studies at DAΦNE by AMADEUS

    Get PDF
    The AMADEUS experiment deals with the investigation of the low-energy kaon-nuclei hadronic interaction at the DAΦNE collider at LNF-INFN, fundamental to respond to longstanding open questions in the non-perturbative QCD in the strangeness sector. One of the most interesting aspects is to understand how hadron masses and interactions change in the nuclear environment. The antikaon-nucleon potential is investigated searching for signals from possible bound kaonic clusters, which would imply a strongly attractive antikaon-nucleon potential. AMADEUS step 0 consists in the analysis of 2004/2005 KLOE data, exploring K− absorptions in H, 4He, 9Be and 12C present in setup materials. The status of the various preliminary analyses is presented, together with future perspectives

    Measurements of the strong-interaction widths of the kaonic 3He and 4He 2p levels

    Get PDF
    The kaonic 3He and 4He X-rays emitted in the 3d-2p transitions were measured in the SIDDHARTA experiment. The widths of the kaonic 3He and 4He 2p states were determined to be Gamma_2p(3He) = 6 \pm 6 (stat.) \pm 7 (syst.) eV, and Gamma_2p(4He) = 14 \pm 8 (stat.) \pm 5 (syst.) eV, respectively. Both results are consistent with the theoretical predictions. The width of kaonic 4He is much smaller than the value of 55 \pm 34 eV determined by the experiments performed in the 70's and 80's, while the width of kaonic 3He was determined for the first time.Comment: Accepted in Phys. Lett.

    Kaonic3He and4He measurements in the SIDDHARTA experiment at the DAΦNE collider

    Get PDF
    The SIDDHARTA collaboration measured kaonic 3 He and 4 He 3d → 2p X-rays with gaseous targets at the DAΦNE e + e − collider. The 2p -state strong-interaction shifts and widths were precisely determined by using 144 high-resolution silicon drift detectors. The shift of K −4 He is in good agreement with theoretical calculations and consistent with the recent experimental result of KEK-PS E570. The shift of K −3 He is also determined for the first time. The newly determined widths are in agreement with optical model calculations
    corecore