2 research outputs found

    Morphological Analysis of the Polarized Synchrotron Emission with WMAP and Planck

    No full text
    International audienceThe bright polarized synchrotron emission, away from the Galactic plane, originates mostly from filamentary structures. We implement a filament finder algorithm which allows the detection of bright elongated structures in polarized intensity maps. We analyse the sky at 23 and 30~GHz as observed respectively by \textit{WMAP} and \textit{Planck}. We identify 19 filaments, 13 of which have been previously observed. For each filament, we study the polarization fraction, finding values typically larger than for the areas outside the filaments, excluding the Galactic plane, and a fraction of about 30% is reached in two filaments. We study the polarization spectral indices of the filaments, and find a spectral index consistent with the values found in previous analysis (about -3.1) for more diffuse regions. Decomposing the polarization signals into the EE and BB families, we find that most of the filaments are detected in PEP_E, but not in PBP_B. We then focus on understanding the statistical properties of the diffuse regions of the synchrotron emission at 23~GHz. Using Minkowski functionals and tensors, we analyse the non-Gaussianity and statistical isotropy of the polarized intensity maps. For a sky coverage corresponding to 80% of the fainter emission, and on scales smaller than 6 degrees (>30\ell > 30), the deviations from Gaussianity and isotropy are significantly higher than 3σ\sigma. The level of deviation decreases for smaller scales, however, it remains significantly high for the lowest analised scale (1.5\sim 1.5^\circ). When 60% sky coverage is analysed, we find that the deviations never exceed 3σ\sigma. Finally, we present a simple data-driven model to generate non-Gaussian and anisotropic simulations of the synchrotron polarized emission. The simulations are fitted in order to match the spectral and statistical properties of the faintest 80% sky coverage of the data maps

    Optical Characterization of OMT-Coupled TES Bolometers for LiteBIRD

    No full text
    International audienceFeedhorn- and orthomode transducer- (OMT) coupled transition edge sensor (TES) bolometers have been designed and micro-fabricated to meet the optical specifications of the LiteBIRD high frequency telescope (HFT) focal plane. We discuss the design and optical characterization of two LiteBIRD HFT detector types: dual-polarization, dual-frequency-band pixels with 195/280 GHz and 235/337 GHz band centers. Results show well-matched passbands between orthogonal polarization channels and frequency centers within 3% of the design values. The optical efficiency of each frequency channel is conservatively reported to be within the range 0.64-0.72, determined from the response to a cryogenic, temperature-controlled thermal source. These values are in good agreement with expectations and either exceed or are within 10% of the values used in the LiteBIRD sensitivity forecast. Lastly, we report a measurement of loss in Nb/SiN x/Nb microstrip at 100 mK and over the frequency range 200-350 GHz, which is comparable to values previously reported in the literature
    corecore