49 research outputs found

    Mesoscale productivity fronts and local fishing opportunities in the European Seas

    Get PDF
    This study evaluates the relationship between both commercial and scientific spatial fisheries data and a new satellite-based estimate of potential fish production (Ocean Productivity available to Fish, OPFish) in the European Seas. To construct OPFish, we used productivity frontal features derived from chlorophyll-a horizontal gradients, which characterize 10%–20% of the global phytoplankton production that effectively fuels higher trophic levels. OPFish is relatively consistent with the spatial distribution of both pelagic and demersal fish landings and catches per unit of effort (LPUEs and CPUEs, respectively). An index of harvest relative to ocean productivity (HP index) is calculated by dividing these LPUEs or CPUEs with OPFish. The HP index reflects the intensity of fishing by gear type with regard to local fish production. Low HP levels indicate lower LPUEs or CPUEs than expected from oceanic production, suggesting over-exploitation, while high HP levels imply more sustainable fishing. HP allows comparing the production-dependent suitability of local fishing intensities. Our results from bottom trawl data highlight that over-exploitation of demersal species from the shelves is twice as high in the Mediterranean Sea than in the North-East Atlantic. The estimate of HP index by dominant pelagic and demersal gears suggests that midwater and bottom otter trawls are associated with the lowest and highest overfishing, respectively. The contrasts of fishing intensity at local scales captured by the HP index suggest that accounting for the local potential fish production can promote fisheries sustainability in the context of ecosystem-based fisheries management as required by international marine policies

    a review

    Get PDF
    It is well documented that global warming is unequivocal. Dairy production systems are considered as important sources of greenhouse gas emissions; however, little is known about the sensitivity and vulnerability of these production systems themselves to climate warming. This review brings different aspects of dairy cow production in Central Europe into focus, with a holistic approach to emphasize potential future consequences and challenges arising from climate change. With the current understanding of the effects of climate change, it is expected that yield of forage per hectare will be influenced positively, whereas quality will mainly depend on water availability and soil characteristics. Thus, the botanical composition of future grassland should include species that are able to withstand the changing conditions (e.g. lucerne and bird's foot trefoil). Changes in nutrient concentration of forage plants, elevated heat loads and altered feeding patterns of animals may influence rumen physiology. Several promising nutritional strategies are available to lower potential negative impacts of climate change on dairy cow nutrition and performance. Adjustment of feeding and drinking regimes, diet composition and additive supplementation can contribute to the maintenance of adequate dairy cow nutrition and performance. Provision of adequate shade and cooling will reduce the direct effects of heat stress. As estimated genetic parameters are promising, heat stress tolerance as a functional trait may be included into breeding programmes. Indirect effects of global warming on the health and welfare of animals seem to be more complicated and thus are less predictable. As the epidemiology of certain gastrointestinal nematodes and liver fluke is favourably influenced by increased temperature and humidity, relations between climate change and disease dynamics should be followed closely. Under current conditions, climate change associated economic impacts are estimated to be neutral if some form of adaptation is integrated. Therefore, it is essential to establish and adopt mitigation strategies covering available tools from management, nutrition, health and plant and animal breeding to cope with the future consequences of climate change on dairy farming

    Genetic connectivity and hybridization with its siter species challenge the current management paradigm of white anglerfish (Lophius piscatorius)

    Get PDF
    Understanding the inter and intraspecific dynamics of fish populations is essential to promote effective management and conservation actions and to predict adaptation to changing conditions. This is possible through the analysis of thousands of genetic markers, which has proven useful to resolve connectivity among populations. Here, we have tackled this issue in the white anglerfish (Lophius piscatorius), which inhabits the Northeast Atlantic and Mediterranean Sea and coexists with its morphologically almost identical sister species, the black anglerfish (L. budegassa). Our genetic analyses based on 16,000 SNP markers and 700 samples reveal that i) the white anglerfish from the Mediterranean Sea and the Atlantic Ocean are genetically isolated, but that no differentiation can be observed within the later, and that ii) black and white anglerfish naturally hybridize, resulting in a population of about 20% of, most likely sterile, hybrids in some areas. These findings challenge the current paradigm of white anglerfish management, which considers three independent management units within the North East Atlantic and assumes that all mature fish have reproductive potential. Additionally, the northwards distribution of both species, likely due to temperature raises, calls for further monitoring of the abundance and distribution of hybrids to anticipate the effects of climate change in the interactions between both species and their potential resilience

    High major histocompatibility complex class I polymorphism despite bottlenecks in wild and domesticated populations of the zebra finch ()

    Get PDF
    Background Two subspecies of zebra finch, Taeniopygia guttata castanotis and T. g. guttata are native to Australia and the Lesser Sunda Islands, respectively. The Australian subspecies has been domesticated and is now an important model system for research. Both the Lesser Sundan subspecies and domesticated Australian zebra finches have undergone population bottlenecks in their history, and previous analyses using neutral markers have reported reduced neutral genetic diversity in these populations. Here we characterize patterns of variation in the third exon of the highly variable major histocompatibility complex (MHC) class I α chain. As a benchmark for neutral divergence, we also report the first mitochondrial NADH dehydrogenase 2 (ND2) sequences in this important model system. Results Despite natural and human-mediated population bottlenecks, we find that high MHC class I polymorphism persists across all populations. As expected, we find higher levels of nucleotide diversity in the MHC locus relative to neutral loci, and strong evidence of positive selection acting on important residues forming the peptide-binding region (PBR). Clear population differentiation of MHC allele frequencies is also evident, and this may be due to adaptation to new habitats and associated pathogens and/or genetic drift. Whereas the MHC Class I locus shows broad haplotype sharing across populations, ND2 is the first locus surveyed to date to show reciprocal monophyly of the two subspecies. Conclusions Despite genetic bottlenecks and genetic drift, all surveyed zebra finch populations have maintained high MHC Class I diversity. The diversity at the MHC Class I locus in the Lesser Sundan subspecies contrasts sharply with the lack of diversity in previously examined neutral loci, and may thus be a result of selection acting to maintain polymorphism. Given uncertainty in historical population demography, however, it is difficult to rule out neutral processes in maintaining the observed diversity. The surveyed populations also differ in MHC Class I allele frequencies, and future studies are needed to assess whether these changes result in functional immune differences

    The λ Red Proteins Promote Efficient Recombination between Diverged Sequences: Implications for Bacteriophage Genome Mosaicism

    Get PDF
    Genome mosaicism in temperate bacterial viruses (bacteriophages) is so great that it obscures their phylogeny at the genome level. However, the precise molecular processes underlying this mosaicism are unknown. Illegitimate recombination has been proposed, but homeologous recombination could also be at play. To test this, we have measured the efficiency of homeologous recombination between diverged oxa gene pairs inserted into λ. High yields of recombinants between 22% diverged genes have been obtained when the virus Red Gam pathway was active, and 100 fold less when the host Escherichia coli RecABCD pathway was active. The recombination editing proteins, MutS and UvrD, showed only marginal effects on λ recombination. Thus, escape from host editing contributes to the high proficiency of virus recombination. Moreover, our bioinformatics study suggests that homeologous recombination between similar lambdoid viruses has created part of their mosaicism. We therefore propose that the remarkable propensity of the λ-encoded Red and Gam proteins to recombine diverged DNA is effectively contributing to mosaicism, and more generally, that a correlation may exist between virus genome mosaicism and the presence of Red/Gam-like systems

    The impact of sex-role reversal on the diversity of the major histocompatibility complex: Insights from the seahorse (Hippocampus abdominalis)

    Get PDF
    Background: Both natural and sexual selection are thought to influence genetic diversity, but the study of the relative importance of these two factors on ecologically-relevant traits has traditionally focused on species with conventional sex-roles, with male-male competition and female-based mate choice. With its high variability and significance in both immune function and olfactory-mediated mate choice, the major histocompatibility complex(MHC/MH) is an ideal system in which to evaluate the relative contributions of these two selective forces to genetic diversity. Intrasexual competition and mate choice are both reversed in sex-role reversed species, and sexrelated differences in the detection and use of MH-odor cues are expected to influence the intensity of sexual selection in such species. The seahorse, Hippocampus abdominalis, has an exceptionally highly developed form of male parental care, with female-female competition and male mate choice. Results: Here, we demonstrate that the sex-role reversed seahorse has a single MH class II beta-chain gene and that the diversity of the seahorse MHIIb locus and its pattern of variation are comparable to those detected in species with conventional sex roles. Despite the presence of only a single gene copy, intralocus MHIIb allelic diversity in this species exceeds that observed in species with multiple copies of this locus. The MHIIb locus of the seahorse exhibits a novel expression domain in the male brood pouch. Conclusions: The high variation found at the seahorse MHIIb gene indicates that sex-role reversed species are capable of maintaining the high MHC diversity typical in most vertebrates. Whether such species have evolved the capacity to use MH-odor cues during mate choice is presently being investigated using mate choice experiments. If this possibility can be rejected, such systems would offer an exceptional opportunity to study the effects of natural selection in isolation, providing powerful comparative models for understanding the relative importance of selective factors in shaping patterns of genetic variation

    Tracing fish and fish products from ocean to fork using advanced molecular technologies

    No full text
    The ability to determine authenticity and provenance of fish and fish products throughout the international fish trade distribution chain is of paramount importance, and in many countries traceability in the fisheries sector is based on labelling rules. As shown by numerous fraud cases worldwide, however, and the relentless global problem of Illegal, Unreported and Unregulated (IUU) fishing, independent control technologies are urgently needed to ensure appropriate implementation of traceability schemes. Here, we discuss opportunities and challenges arising from the rapid progress in research and technology pertinent to traceability. In support of an integrative approach, several technologies will be considered, though emphasis is placed on DNA technology as an approach witnessing major recent developmentJRC.DG.G.4-Maritime affair

    Review the Current Status of Traceability Methods in the Fisheries Sector Based on Genetics

    No full text
    The fight against Illegal, Unreported and Unregulated (IUU) fishing plays a crucial role in the attempt to move towards sustainable fisheries. IUU fishing is a global problem that continues to be out of control. Its value has been assessed to amount worldwide to be between ¿10 to 20 billion (Agnew et al., 2009), which is more than twice the value of annual landings by the EU fleet (¿6.8 billion in 20043). These estimates are probably rather conservative, but certainly IUU fishing represents the major source of fishing mortality (Figure 3.1.1.1). Such estimates are, however, probably very conservative, but nevertheless represent the major source of fishing mortality. Escaping control, IUU fishing threatens marine ecosystems, impedes management schemes for sustainable fisheries, and has a negative effect on socio-economic development. Moreover, globalisation has had major affects on the food supply chain. It has removed production from direct consumer control, increased competition, lengthened the food supply chain, and made it less transparent. There has been an associated increase in awareness in traceability issues to deal with food safety, quality assurance and animal welfare. Illegal activities extend into the supply chain, as has become evident by fraud cases in the US and Europe where fish has been sold under false labels (for examples see Annex 1). Such practice leads to consumer misinformation and hampers efforts to ensure consumer protection. Consumer protection is currently mainly assured by documentation and labelling of products and such a system is prone to fraudulent activities. Increasing dependence on product imports and complex marketing patterns further impede efforts to regulate and control the fisheries sector. Increasingly, certification procedures that endorse sustainable fisheries, such as awarded by the Marine Stewardship Council (MSC) or consumer oriented websites describing fishery status, such as the NOAA Fishwatch program (http://www.nmfs.noaa.gov/fishwatch/), are employed to provide information on fishery products. However, such certification is also susceptible to fraud. Therefore, to fight illegal fishing activities and ensure sustainability, fairness and transparency in the fisheries sector, as well as for the information and protection of consumers, a traceability system is required. Traceability is defined by the CODEX Alimentarius Commision (CAC 2006) and according to ISO 22005:2007 as the ¿ability to follow the movement of a food through specified stages(s) of production, processing, and distribution and for the EU laid down in Regulation (EC) No. 178/2002. Any such system in the fisheries sector should be effective throughout the food supply chain (¿from ocean to fork¿), and be supported by independent control measures to verify the species and origins of fish and shellfish caught. Consequently there is an urgent need to identify traceability markers that can be used throughout the food supply chain, from on-board samples, to processed product, and which exhibit minimal variance. Furthermore, it is likely that traceability tools will in many cases need to be applied within a sufficiently robust forensic framework (Ogden 2008) to promote legal enforcement.JRC.G.4-Maritime affair
    corecore