18,207 research outputs found

    Near-Infrared spectroscopy of the super star cluster in NGC1705

    Full text link
    We study the near-infrared properties of the super star cluster NGC1750-1 in order to constrain its spatial extent, its stellar population and its age. We use adaptive optics assisted integral field spectroscopy with SINFONI on the VLT. We estimate the spatial extent of the cluster and extract its K-band spectrum from which we constrain the age of the dominant stellar population. Our observations have an angular resolution of about 0.11", providing an upper limit on the cluster radius of 2.85+/-0.50 pc depending on the assumed distance. The K-band spectrum is dominated by strong CO absorption bandheads typical of red supergiants. Its spectral type is equivalent to a K4-5I star. Using evolutionary tracks from the Geneva and Utrecht groups, we determine an age of 12+/-6 Myr. The large uncertainty is rooted in the large difference between the Geneva and Utrecht tracks in the red supergiants regime. The absence of ionized gas lines in the K-band spectrum is consistent with the absence of O and/or Wolf-Rayet stars in the cluster, as expected for the estimated age.Comment: 5 pages, 4 figures. Research Note accepted in Astronomy and Astrophysic

    On the influence that the ground electrode diameter has in the propulsion efficiency of an asymmetric capacitor in nitrogen gas

    Full text link
    In this work the propulsion force developed in an asymmetric capacitor will be calculated for three different diameters of the ground electrode. The used ion source is a small diameter wire, which generates a positive corona discharge in nitrogen gas directed to the ground electrode. By applying the fluid dynamic and electrostatic theories all hydrodynamic and electrostatic forces that act on the considered geometries will be computed in an attempt to provide a physical insight on the force mechanism that acts on the asymmetrical capacitors, and also to understand how to increase the efficiency of propulsion.Comment: 13 pages, 8 figures, Accepted for publication in "Physics of Plasmas

    Cosmic String Network Evolution in arbitrary Friedmann-Lemaitre models

    Get PDF
    We use the velocity-dependent one-scale model by Martins & Shellard to investigate the evolution of a GUT long cosmic string network in arbitrary Friedmann-Lemaitre models. Four representative models are used to show that in general there is no scaling solution. The implications for structure formation are briefly discussed.Comment: 8 pages, 4 postscript figures included, submitted to Phys. Rev.

    Coeficientes técnicos e custos agregados na cadeia produtiva do frango no oeste catarinense.

    Get PDF
    bitstream/item/58224/1/doc121.pdfProjeto n. 04.06.32.000-02

    Necessary Optimality Conditions for Higher-Order Infinite Horizon Variational Problems on Time Scales

    Full text link
    We obtain Euler-Lagrange and transversality optimality conditions for higher-order infinite horizon variational problems on a time scale. The new necessary optimality conditions improve the classical results both in the continuous and discrete settings: our results seem new and interesting even in the particular cases when the time scale is the set of real numbers or the set of integers.Comment: This is a preprint of a paper whose final and definite form will appear in Journal of Optimization Theory and Applications (JOTA). Paper submitted 17-Nov-2011; revised 24-March-2012 and 10-April-2012; accepted for publication 15-April-201

    Topological defects: A problem for cyclic universes?

    Full text link
    We study the behaviour of cosmic string networks in contracting universes, and discuss some of their possible consequences. We note that there is a fundamental time asymmetry between defect network evolution for an expanding universe and a contracting universe. A string network with negligible loop production and small-scale structure will asymptotically behave during the collapse phase as a radiation fluid. In realistic networks these two effects are important, making this solution only approximate. We derive new scaling solutions describing this effect, and test them against high-resolution numerical simulations. A string network in a contracting universe, together with the gravitational radiation background it has generated, can significantly affect the dynamics of the universe both locally and globally. The network can be an important source of radiation, entropy and inhomogeneity. We discuss the possible implications of these findings for bouncing and cyclic cosmological models.Comment: 11 RevTeX 4 pages, 6 figures; version to appear in Phys. Rev.
    corecore