25,962 research outputs found
Divide and conquer: resonance induced by competitive interactions
We study an Ising model in a network with disorder induced by the presence of
both attractive and repulsive links. This system is subjected to a subthreshold
signal, and the goal is to see how the response is enhanced for a given
fraction of repulsive links. This can model a network of spin-like neurons with
excitatory and inhibitory couplings. By means of numerical simulations and
analytical calculations we find that there is an optimal probability, such that
the coherent response is maximal
Fisher matrix forecasts for astrophysical tests of the stability of the fine-structure constant
We use Fisher Matrix analysis techniques to forecast the cosmological impact
of astrophysical tests of the stability of the fine-structure constant to be
carried out by the forthcoming ESPRESSO spectrograph at the VLT (due for
commissioning in late 2017), as well by the planned high-resolution
spectrograph (currently in Phase A) for the European Extremely Large Telescope.
Assuming a fiducial model without variations, we show that ESPRESSO
can improve current bounds on the E\"{o}tv\"{o}s parameter---which quantifies
Weak Equivalence Principle violations---by up to two orders of magnitude,
leading to stronger bounds than those expected from the ongoing tests with the
MICROSCOPE satellite, while constraints from the E-ELT should be competitive
with those of the proposed STEP satellite. Should an variation be
detected, these measurements will further constrain cosmological parameters,
being particularly sensitive to the dynamics of dark energy.Comment: Phys. Lett. B (in press
Differential mesenteric fat deposition in bovines fed on silage or concentrate is independent of glycerol membrane permeability
© The Animal Consortium 2011In the meat industry, the manipulation of fat deposition in cattle is of pivotal importance to improve production efficiency, carcass composition and ultimately meat quality. There is an increasing interest in the identification of key factors and molecular mechanisms responsible for the development of specific fat depots. This study aimed at elucidating the influence of breed and diet on adipose tissue membrane permeability and fluidity and their interplay on fat deposition in bovines. Two Portuguese autochthonous breeds, Alentejana and Barrosã, recognized as late- and early-maturing breeds, respectively, were chosen to examine the effects of breed and diet on fat deposition and on adipose membrane composition and permeability. Twenty-four male bovines from these breeds were fed on silage-based or concentrate-based diets for 11 months. Animals were slaughtered to determine their live slaughter and hot carcass weights, as well as weights of subcutaneous and visceral adipose depots. Mesenteric fat depots were excised and used to isolate adipocyte membrane vesicles where cholesterol content, fatty acid profile as well as permeability and fluidity were determined. Total accumulation of neither subcutaneous nor visceral fat was influenced by breed. In contrast, mesenteric and omental fat depots weights were higher in concentrate-fed bulls relative to silage-fed animals. Membrane fluidity and permeability to water and glycerol in mesenteric adipose tissue were found to be independent of breed and diet. Moreover, the deposition of cholesterol and unsaturated fatty acids, which may influence membrane properties, were unchanged among experimental groups. Adipose membrane lipids from the mesenteric fat depot of ruminants were rich in saturated fatty acids, and unaffected by polyunsaturated fatty acids dietary levels. Our results provide evidence against the involvement of cellular membrane permeability to glycerol on fat accumulation in mesenteric fat tissue of concentrate-fed bovines, which is consistent with the unchanged membrane lipid profile found among experimental groups.This study was supported by Fundação para a Ciência e a Tecnologia (FCT) through grant PTDC/CVT/2006/66114 and individual fellowships to Ana P. Martins (SFRH/BD/2009/65046), Ana S. H. Costa (SFRH/BD/2009/61068) and Susana V. Martins (SFRH/BPD/2009/63019). Paula A. Lopes is a researcher from the program ‘‘Ciência 2008’’ from FC
Structural studies of mesoporous ZrO-CeO and ZrO-CeO/SiO mixed oxides for catalytical applications
In this work the synthesis of ZrO-CeO and
ZrO-CeO/SiO were developed, based on the process to form
ordered mesoporous materials such as SBA-15 silica. The triblock copolymer
Pluronic P-123 was used as template, aiming to obtain crystalline single phase
walls and larger specific surface area, for future applications in catalysis.
SAXS and XRD results showed a relationship between ordered pores and the
material crystallization. 90% of CeO leaded to single phase homogeneous
ceria-zirconia solid solution of cubic fluorite structure (Fmm). The
SiO addition improved structural and textural properties as well as the
reduction behavior at lower temperatures, investigated by XANES measurements
under H atmosphere
Finite temperature corrections and embedded strings in noncommutative geometry and the standard model with neutrino mixing
The recent extension of the standard model to include massive neutrinos in
the framework of noncommutative geometry and the spectral action principle
involves new scalar fields and their interactions with the usual complex scalar
doublet. After ensuring that they bring no unphysical consequences, we address
the question of how these fields affect the physics predicted in Weinberg-Salam
theory, particularly in the context of the Electroweak phase transition.
Applying the Dolan-Jackiw procedure, we calculate the finite temperature
corrections, and find that the phase transition is first order. The new scalar
interactions significantly improve the stability of the Electroweak Z string,
through the ``bag'' phenomenon described by Watkins and Vachaspati. (Recently
cosmic strings have climbed back into interest due to new evidence). Sourced by
static embedded strings, an internal space analogy of Cartan's torsion is
drawn, and a possible Higgs-force-like `gravitational' effect of this
non-propagating torsion on the fermion masses is described. We also check that
the field generating the Majorana mass for the is non-zero in the
physical vacuum.Comment: 42 page
- …