7,078 research outputs found

    A Warp in Progress : H I and Radio Continuum Observations of the Spiral NGC 3145

    Get PDF
    Date of Acceptance: 16/06/2015We present VLA H I and 6 cm radio continuum observations of the spiral NGC 3145 and H I observations of its two companions, NGC 3143 and PGC 029578. In optical images NGC 3145 has stellar arms that appear to cross, forming "X"-features. Our radio continuum observations rule out shock fronts at 3 of the 4 "X"-features. In the middle-to-outer disk, the H I line-profiles of NGC 3145 are skewed. Relative to the disk, the gas in the skewed wing of the line-profiles has z-motions away from us on the approaching side of the galaxy and z-motions of about the same magnitude (about 40 km/s) towards us on the receding side. These warping motions imply that there has been a perturbation with a sizeable component perpendicular to the disk over large spatial scales. Two features in NGC 3145 have velocities indicating that they are out-of-plane tidal arms. One is an apparent branch of a main spiral arm; the velocity of the branch is 150 km/s greater than the spiral arm where they appear to intersect in projection. The other is an arm that forms 3 of the "X"-features. It differs in velocity by 56 km/s from the disk at the same projected location. Based on its SFR and H I properties, NGC 3143 is the more likely of the two companions to have interacted with NGC 3145 recently. A simple analytic model demonstrates that an encounter between NGC 3143 and NGC 3145 is a plausible explanation for the observed warping motions in NGC 3145.Peer reviewe

    Structural mapping from MSS-LANDSAT imagery: A proposed methodology for international geological correlation studies

    Get PDF
    A methodology is proposed for international geological correlation studies based on LANDSAT-MSS imagery, Bullard's model of continental fit and compatible structural trends between Northeast Brazil and the West African counterpart. Six extensive lineaments in the Brazilian study area are mapped and discussed according to their regional behavior and in relation to the adjacent continental margin. Among the first conclusions, correlations were found between the Sobral Pedro II Lineament and the megafaults that surround the West African craton; and the Pernambuco Lineament with the Ngaurandere Linemanet in Cameroon. Ongoing research to complete the methodological stages includes the mapping of the West African structural framework, reconstruction of the pre-drift puzzle, and an analysis of the counterpart correlations

    Iron Emission in the z=6.4 Quasar SDSS J114816.64+525150.3

    Full text link
    We present near-infrared J and K-band spectra of the z = 6.4 quasar SDSS J114816.64+525150.3 obtained with the NIRSPEC spectrograph at the Keck-II telescope, covering the rest-frame spectral regions surrounding the C IV 1549 and Mg II 2800 emission lines. The iron emission blend at rest wavelength 2900-3000 A is clearly detected and its strength appears nearly indistinguishable from that of typical quasars at lower redshifts. The Fe II / Mg II ratio is also similar to values found for lower-redshift quasars, demonstrating that there is no strong evolution in Fe/alpha broad-line emission ratios even out to z=6.4. In the context of current models for iron enrichment from Type Ia supernovae, this implies that the SN Ia progenitor stars formed at z > 10. We apply the scaling relations of Vestergaard and of McLure & Jarvis to estimate the black hole mass from the widths of the C IV and Mg II emission lines and the ultraviolet continuum luminosity. The derived mass is in the range (2-6)x10^9 solar masses, with an additional uncertainty of a factor of 3 due to the intrinsic scatter in the scaling relations. This result is in agreement with the previous mass estimate of 3x10^9 solar masses by Willott, McLure, & Jarvis, and supports their conclusion that the quasar is radiating close to its Eddington luminosity.Comment: To appear in ApJ Letter

    Project Gondwana: Jugaribe-SB-24

    Get PDF
    There are no author-identified significant results in this report

    Nuclear spirals: gas in asymmetric galactic potential with a massive black hole

    Get PDF
    Nuclear spirals can provide a wealth of information about the nuclear potential in disc galaxies. They form naturally as a gas response to non-axisymmetry in the gravitational potential, even if the degree of this asymmetry is very small. Linear wave theory well describes weak nuclear spirals, but stronger asymmetries in the potential induce waves beyond the linear regime, which appear as spiral shocks. If a central massive black hole (MBH) is present, spiral shocks can extend all the way to its immediate vicinity, and generate gas inflow up to 0.03 Msun/yr. This coincides with the accretion rates needed to power local Active Galactic Nuclei.Comment: 4 pages, 3 figures, to appear in the proceedings of the IAU Symp.222 "The Interplay among Black Holes, Stars and ISM in Galactic Nuclei

    Engineering a C-Phase quantum gate: optical design and experimental realization

    Full text link
    A two qubit quantum gate, namely the C-Phase, has been realized by exploiting the longitudinal momentum (i.e. the optical path) degree of freedom of a single photon. The experimental setup used to engineer this quantum gate represents an advanced version of the high stability closed-loop interferometric setup adopted to generate and characterize 2-photon 4-qubit Phased Dicke states. Some experimental results, dealing with the characterization of multipartite entanglement of the Phased Dicke states are also discussed in detail.Comment: accepted for publication on EPJ

    The Cluster and Field Galaxy AGN Fraction at z = 1 to 1.5: Evidence for a Reversal of the Local Anticorrelation Between Environment and AGN Fraction

    Full text link
    The fraction of cluster galaxies that host luminous AGN is an important probe of AGN fueling processes, the cold ISM at the centers of galaxies, and how tightly black holes and galaxies co-evolve. We present a new measurement of the AGN fraction in a sample of 13 clusters of galaxies (M >= 10^{14} Msun) at 1<z<1.5 selected from the Spitzer/IRAC Shallow Cluster Survey, as well as the field fraction in the immediate vicinity of these clusters, and combine these data with measurements from the literature to quantify the relative evolution of cluster and field AGN from the present to z~3. We estimate that the cluster AGN fraction at 1<z<1.5 is f_A = 3.0^{+2.4}_{-1.4}% for AGN with a rest-frame, hard X-ray luminosity greater than L_{X,H} >= 10^{44} erg/s. This fraction is measured relative to all cluster galaxies more luminous than M*_{3.6}(z)+1, where M*_{3.6}(z) is the absolute magnitude of the break in the galaxy luminosity function at the cluster redshift in the IRAC 3.6um bandpass. The cluster AGN fraction is 30 times greater than the 3sigma upper limit on the value for AGN of similar luminosity at z~0.25, as well as more than an order of magnitude greater than the AGN fraction at z~0.75. AGN with L_{X,H} >= 10^{43} erg/s exhibit similarly pronounced evolution with redshift. In contrast with the local universe, where the luminous AGN fraction is higher in the field than in clusters, the X-ray and MIR-selected AGN fractions in the field and clusters are consistent at 1<z<1.5. This is evidence that the cluster AGN population has evolved more rapidly than the field population from z~1.5 to the present. This environment-dependent AGN evolution mimics the more rapid evolution of star-forming galaxies in clusters relative to the field.Comment: ApJ Accepted. 16 pages, 8 figures in emulateapj forma
    • …
    corecore