7 research outputs found

    Glioblastoma Pseudoprogression Discrimination Using Multiparametric Magnetic Resonance Imaging, Principal Component Analysis, and Supervised and Unsupervised Machine Learning

    Get PDF
    Glioblastoma; Prediction models; PseudoprogressionGlioblastoma; Models de predicció; PseudoprogressióGlioblastoma; Modelos de predicción; PseudoprogresiónBackground One of the most frequent phenomena in the follow-up of glioblastoma is pseudoprogression, present in up to half of cases. The clinical usefulness of discriminating this phenomenon through magnetic resonance imaging and nuclear medicine has not yet been standardized; in this study, we used machine learning on multiparametric magnetic resonance imaging to explore discriminators of this phenomenon. Methods For the study, 30 patients diagnosed with IDH wild-type glioblastoma operated on at both study centers in 2011–2020 were selected; 15 patients corresponded to early tumor progression and 15 patients to pseudoprogression. Using unsupervised learning, the number of clusters and tumor segmentation was recorded using gap-stat and k-means method, adjusting to voxel adjacency. In a second phase, a class prediction was carried out with a multinomial logistic regression supervised learning method; the outcome variables were the percentage of assignment, class overrepresentation, and degree of voxel adjacency. Results Unsupervised learning of the tumor in its diagnosis shows up to 14 well-differentiated tumor areas. In the supervised learning phase, there is a higher percentage of assigned classes (P < 0.01), less overrepresentation of classes (P < 0.01), and greater adjacency (55% vs. 33%) in cases of true tumor progression compared with pseudoprogression. Conclusions True tumor progression preserves the multidimensional characteristics of the basal tumor at the voxel and region of interest level, resulting in a characteristic differential pattern when supervised learning is used

    Immune cell profiling of the cerebrospinal fluid enables the characterization of the brain metastasis microenvironment

    Get PDF
    Brain metastases are the most common tumor of the brain with a dismal prognosis. A fraction of patients with brain metastasis benefit from treatment with immune checkpoint inhibitors (ICI) and the degree and phenotype of the immune cell infiltration has been used to predict response to ICI. However, the anatomical location of brain lesions limits access to tumor material to characterize the immune phenotype. Here, we characterize immune cells present in brain lesions and matched cerebrospinal fluid (CSF) using single-cell RNA sequencing combined with T cell receptor genotyping. Tumor immune infiltration and specifically CD8 + T cell infiltration can be discerned through the analysis of the CSF. Consistently, identical T cell receptor clonotypes are detected in brain lesions and CSF, confirming cell exchange between these compartments. The analysis of immune cells of the CSF can provide a non-invasive alternative to predict the response to ICI, as well as identify the T cell receptor clonotypes present in brain metastasis. The use of CSF for diagnosis of metastatic brain tumors could be of clinical and patient benefit. Here the authors undertake a single-cell RNA analysis of CSF and brain to determine whether the phenotype in the CSF is reflective of the phenotype in the tumo

    ctDNA-Based Liquid Biopsy of Cerebrospinal Fluid in Brain Cancer

    Get PDF
    The optimal treatment and management of patients with brain cancer depend on the molecular characteristics of their tumour. Since the tumour changes with time, it is, therefore, essential to characterise the tumour of each patient at the exact time of selecting the most suitable therapeutic strategy. However, obtaining a tumour biopsy for its characterisation is a risky and invasive procedure and, sometimes, not even feasible, leading to a lack of information about the tumour. These challenges can be overcome by using a liquid biopsy of cerebrospinal fluid. Brain cancer cells release DNA into the cerebrospinal fluid, and the analysis of the cell-free circulating tumour DNA can reveal the genetic profile of brain cancer in a relatively noninvasive manner. In this review, we revise the recent results in this field that show how circulating tumour DNA in cerebrospinal fluid can provide diagnostic and prognostic information, identify potential therapeutic targets, monitor the tumour response or resistance to treatment, and help to identify tumour relapse. The correct characterisation of central nervous system (CNS) malignancies is crucial for accurate diagnosis and prognosis and also the identification of actionable genomic alterations that can guide the therapeutic strategy. Surgical biopsies are performed to characterise the tumour; however, these procedures are invasive and are not always feasible for all patients. Moreover, they only provide a static snapshot and can miss tumour heterogeneity. Currently, monitoring of CNS cancer is performed by conventional imaging techniques and, in some cases, cytology analysis of the cerebrospinal fluid (CSF); however, these techniques have limited sensitivity. To overcome these limitations, a liquid biopsy of the CSF can be used to obtain information about the tumour in a less invasive manner. The CSF is a source of cell-free circulating tumour DNA (ctDNA), and the analysis of this biomarker can characterise and monitor brain cancer. Recent studies have shown that ctDNA is more abundant in the CSF than plasma for CNS malignancies and that it can be sequenced to reveal tumour heterogeneity and provide diagnostic and prognostic information. Furthermore, analysis of longitudinal samples can aid patient monitoring by detecting residual disease or even tracking tumour evolution at relapse and, therefore, tailoring the therapeutic strategy. In this review, we provide an overview of the potential clinical applications of the analysis of CSF ctDNA and the challenges that need to be overcome in order to translate research findings into a tool for clinical practic

    LIF regulates CXCL9 in tumor-associated macrophages and prevents CD8+ T cell tumor-infiltration impairing anti-PD1 therapy

    Get PDF
    Cancer response to immunotherapy depends on the infiltration of CD8 T cells and the presence of tumor-associated macrophages within tumors. Still, little is known about the determinants of these factors. We show that LIF assumes a crucial role in the regulation of CD8 T cell tumor infiltration, while promoting the presence of protumoral tumor-associated macrophages. We observe that the blockade of LIF in tumors expressing high levels of LIF decreases CD206, CD163 and CCL2 and induces CXCL9 expression in tumor-associated macrophages. The blockade of LIF releases the epigenetic silencing of CXCL9 triggering CD8 T cell tumor infiltration. The combination of LIF neutralizing antibodies with the inhibition of the PD1 immune checkpoint promotes tumor regression, immunological memory and an increase in overall survival

    Circulating tumour DNA from the cerebrospinal fluid allows the characterisation and monitoring of medulloblastoma

    Get PDF
    The molecular characterisation of medulloblastoma, the most common paediatric brain tumour, is crucial for the correct management and treatment of this heterogenous disease. However, insufficient tissue sample, the presence of tumour heterogeneity, or disseminated disease can challenge its diagnosis and monitoring. Here, we report that the cerebrospinal fluid (CSF) circulating tumour DNA (ctDNA) recapitulates the genomic alterations of the tumour and facilitates subgrouping and risk stratification, providing valuable information about diagnosis and prognosis. CSF ctDNA also characterises the intra-tumour genomic heterogeneity identifying small subclones. ctDNA is abundant in the CSF but barely present in plasma and longitudinal analysis of CSF ctDNA allows the study of minimal residual disease, genomic evolution and the characterisation of tumours at recurrence. Ultimately, CSF ctDNA analysis could facilitate the clinical management of medulloblastoma patients and help the design of tailored therapeutic strategies, increasing treatment efficacy while reducing excessive treatment to prevent long-term secondary effects. Non-invasive and precise methods are critical for monitoring paediatric brain cancers. Here the authors show that the molecular alterations and heterogeneity of paediatric medulloblastomas can be reliably detected in circulating tumour DNA from the cerebrospinal fluid - a routinely collected sampl

    Cerebrospinal fluid-derived circulating tumour DNA better represents the genomic alterations of brain tumours than plasma

    Get PDF
    Cell-free circulating tumour DNA (ctDNA) in plasma has been shown to be informative of the genomic alterations present in tumours and has been used to monitor tumour progression and response to treatments. However, patients with brain tumours do not present with or present with low amounts of ctDNA in plasma precluding the genomic characterization of brain cancer through plasma ctDNA. Here we show that ctDNA derived from central nervous system tumours is more abundantly present in the cerebrospinal fluid (CSF) than in plasma. Massively parallel sequencing of CSF ctDNA more comprehensively characterizes the genomic alterations of brain tumours than plasma, allowing the identification of actionable brain tumour somatic mutations. We show that CSF ctDNA levels longitudinally fluctuate in time and follow the changes in brain tumour burden providing biomarkers to monitor brain malignancies. Moreover, CSF ctDNA is shown to facilitate and complement the diagnosis of leptomeningeal carcinomatosis. DNA circulating in the plasma of cancer patients carries features of the primary tumour, however such DNA is found in low levels in brain cancer patients. Here, the authors show that circulating tumour DNA can be detected in the cerebral spinal fluid of cancer patients and that this better recapitulates the primary tumour compared to DNA from the plasma

    Cerebrospinal fluid-derived circulating tumour DNA better represents the genomic alterations of brain tumours than plasma

    Get PDF
    Cell-free circulating tumour DNA (ctDNA) in plasma has been shown to be informative of the genomic alterations present in tumours and has been used to monitor tumour progression and response to treatments. However, patients with brain tumours do not present with or present with low amounts of ctDNA in plasma precluding the genomic characterization of brain cancer through plasma ctDNA. Here we show that ctDNA derived from central nervous system tumours is more abundantly present in the cerebrospinal fluid (CSF) than in plasma. Massively parallel sequencing of CSF ctDNA more comprehensively characterizes the genomic alterations of brain tumours than plasma, allowing the identification of actionable brain tumour somatic mutations. We show that CSF ctDNA levels longitudinally fluctuate in time and follow the changes in brain tumour burden providing biomarkers to monitor brain malignancies. Moreover, CSF ctDNA is shown to facilitate and complement the diagnosis of leptomeningeal carcinomatosis. DNA circulating in the plasma of cancer patients carries features of the primary tumour, however such DNA is found in low levels in brain cancer patients. Here, the authors show that circulating tumour DNA can be detected in the cerebral spinal fluid of cancer patients and that this better recapitulates the primary tumour compared to DNA from the plasma
    corecore