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Glioblastoma Pseudoprogression Discrimination Using Multiparametric Magnetic
Resonance Imaging, Principal Component Analysis, and Supervised and

Unsupervised Machine Learning

José Luis Thenier-Villa">, Francisco Ramén Martinez-Ricarte®®, Margarita Figueroa-Vezirian®, Fuat Arikan-Abell6’

BACKGROUND: One of the most frequent phenomena in
the follow-up of glioblastoma is pseudoprogression, pre-
sent in up to half of cases. The clinical usefulness of
discriminating this phenomenon through magnetic reso-
nance imaging and nuclear medicine has not yet bheen
standardized; in this study, we used machine learning on
multiparametric magnetic resonance imaging to explore
discriminators of this phenomenon.

METHODS: For the study, 30 patients diagnosed with IDH
wild-type glioblastoma operated on at both study centers in
2011—-2020 were selected; 15 patients corresponded to
early tumor progression and 15 patients to pseudoprog-
ression. Using unsupervised learning, the number of clus-
ters and tumor segmentation was recorded using gap-stat
and k-means method, adjusting to voxel adjacency. In a
second phase, a class prediction was carried out with a
multinomial logistic regression supervised learning
method; the outcome variables were the percentage of
assignment, class overrepresentation, and degree of voxel
adjacency.

RESULTS: Unsupervised learning of the tumor in its
diagnosis shows up to 14 well-differentiated tumor areas.
In the supervised learning phase, there is a higher per-
centage of assigned classes (P < 0.01), less over-
representation of classes (P < 0.01), and greater adjacency

(55% vs. 33%) in cases of true tumor progression compared
with pseudoprogression.

CONCLUSIONS: True tumor progression preserves the
multidimensional characteristics of the basal tumor at the
voxel and region of interest level, resulting in a charac-
teristic differential pattern when supervised learning is
used.

INTRODUCTION

lioblastoma is the most common primary malignant

tumor in adults, accounting for approximately 60% of all

gliomas.”* The incidence of glioblastoma in Europe is
about 3 per 100,000 inhabitants.>* Even with current medical
and therapeutic advances, median survival after diagnosis is 15—
18 months and 5-year survival is only 5%, making it one of the
diseases with a prognosis that remains almost universally fatal in
the short term.”

Multiparametric magnetic resonance imaging (MRI) is the most
useful noninvasive method for diagnosis and follow-up of glio-
blastoma, which (in most centers) includes at least 5 radiologic
sequences considered relevant: Tr-weighted imaging, gadolinium-
enhanced Tr-weighted, T2-weighted imaging, fluid-attenuated
inversion recovery, and apparent diffusion coefficient. Each
radiologic sequence has different pulse sequence characteristics,
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inversion time, or magnitude of diffusion of water molecules,
which translates into different intensities for each tissue.’

Follow-up MRI is usually performed every 3 months after the
first radiologic imaging study. In some patients, the combination
of chemoradiation therapy produces significant radiologic
changes during the first 3—6 months of treatment, and a phe-
nomenon called pseudoprogression occurs in between 36% and
50% of cases,” simulating a tumor progression in MRI, with a
characteristic increase or appearance of new areas of contrast
enhancement compared with early postoperative MRI, and
constituting a challenge in the follow-up of glioblastoma,
because only the biopsy or late radiologic findings are conclusive
of true progression, and their inadequate classification can lead to
delayed treatment of true progression, or inappropriate thera-
peutic escalation in cases of pseudoprogression.®°

A recent review'" addressed the different radiologic and nuclear
medicine solutions proposed for the discrimination of
pseudoprogression and true tumor progression. The
investigators concluded that advanced MRI and positron
emission tomography seem superior for this purpose; however,
uniform and standardized practices or protocols, which allow
reproducibility between different populations, are lacking. In
that review, biomedical informatics methods for voxel-level
multidimensional data transformation with machine learning al-
gorithms are not mentioned as an explored technique. Feature
extraction and redundancy removal from multispectral images
have rarely been used in brain tumor MRI analysis but have been
found useful for classification purposes in normal brain tissue and
tumors from other locations.”*?

METHODS

Study Population

For this study, 60 brain MRI studies from 30 patients were
analyzed, obtained from the brain tumor database of the Univer-
sity Hospital Arnau de Vilanova in Lleida, Spain and Vall d’Hebron
University Hospital in Barcelona, Spain (2011—2020). For this
study, we included patients with histologic confirmation of IDH
wild-type glioblastoma by surgical resection with a minimum
follow-up of g months and at least 2 late postsurgical MRI studies
(3—6 months). We explicitly excluded patients with absence of
adjuvant treatment for any reason; significant postsurgical com-
plications including hematomas, infections, or infarctions; age
>75 years; biopsy only; and patients under clinical trial or who had
received a different treatment from the standard.

Fifteen cases corresponded to patients with a diagnosis of early
postsurgical tumor progression and 15 cases corresponded to
patients with a diagnosis of pseudoprogression, confirmed by
clinical-radiologic evolution or biopsy. Two MRIs obtained at 2
different times (diagnosis and progression/pseudoprogression
report) were analyzed in the same multidimensional space. This
study design was approved by the medical research ethics com-
mittee of the University Hospital Arnau de Vilanova (CEIC-2774)
and University Hospital Vall d’Hebron (PR(AG)25/2023).

Principal Component Analysis
Principal component analysis (PCA) is a multivariate analysis
method that allows assessing multidimensional datasets (in this

study, each MRI sequence corresponds to 1 dimension), for which
linear combinations of the original variables that represent the
greatest variability of the data are sought. An application of this
technique is the reduction of dimensionality, so that when there is
a large number of possibly correlated variables (the physical
characteristics of the tissue define its behavior in each MRI
sequence), it allows reducing them to transformed variables,
called principal components (PCs), that explain all the variability
of the data."* Each PC is obtained by a linear combination of the
original variables, which can be understood as new variables
obtained by combining the original variables in a certain way.
The process to follow to calculate the first PC is:

Histogram-matching normalization for each pair of sequences of
the 5 MRI sequences of interest (diagnostic and follow-up pair of
sequences) so different machine acquisitions become
comparable.”

Centering of the variables: the mean of the variable to which it
belongs is subtracted from each value. This process ensures that
all variables have zero mean, so different MRI sequences
become comparable.

- An optimization problem is solved to find the value of the
loadings with which the variance is maximized computing the
eigenvector-eigenvalue of the covariance matrix.

Once the first component (PCr) has been calculated, the second
(PC2) is calculated by repeating the same process, with the con-
dition that the linear combination cannot be correlated with the
first component. This process is equivalent to saying that PCr and
PC2 have to be perpendicular (uncorrelated). The process is
repeated iteratively until 5 PCs are calculated (the same number as
there are sequences). The order of relevance of the components is
given by the magnitude of the variance explained by each
component.'®

If all the PCs of a dataset are calculated, then, although trans-
formed, all the information present in the original data is being
stored.

Unsupervised Learning

The clustering method corresponds to the field of unsupervised
learning; in this machine learning technique, data delivered to the
algorithm have not been previously categorized by their origin or
by human intervention (unlabeled data). Clustering was shown to
be more efficient for segmentation when there is no data redun-
dancy and, hence, the relevance of PCA as a previous step."’

In k-means clustering, it is assumed that there are many groups
from a dataset; the number of groups is defined as k, hence, the
name of the algorithm. The task of the algorithm is to define to
which type of category (cluster) each data point belongs (in our
case, each MRI voxel after PCA). The objective is the search for
cluster centers that minimize the intracluster variance by mini-
mizing the square of the euclidean distance between a cluster
center for all the components of that cluster.

The standard algorithm includes a series of iterative re-
finements from naive k-means random centers (initialization) so
that in each iterative step the mean or centroid is recalculated for
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the observations assigned to a cluster. The algorithm converges
when after reassigning the centroids, the components no longer
show changes.™

In our study, we used a maximum of 600 iterations and a range
of centroids from 2 to 20. The optimal number of centroids was
obtained through the statistical gap method following the criteria
of Tibshirani et al.” The clustering labels are then returned to the
transformed data matrixes preserving their spatial origin and are
graphically represented in the same spatial frame.

A set of single-class voxels does not obey only the multidi-
mensional clustering criterion; the second criterion, spatial adja-
cency of the voxel classes, was analyzed using congruence
comparison in adjacency matrixes. A neighborhood matrix for 4
directions was obtained with the function raster:adjacent in R (R
Foundation for Statistical Computing, Vienna, Austria). The
minimum valid criterion was 50% of adjacency (this means that
any voxel should be adjacent to another voxel with the same class
in at least 50% of cases to become a true cluster). In cases of low
adjacency, the procedure was repeated, decreasing k to k—r1 until
the minimum allowed adjacency of 50% was reached.

Supervised Learning

Once the multidimensional voxels in the preoperative brain MRI
have been clustered, the supervised learning method on the
follow-up MRI is used to assign each new voxel of the region of
interest (ROI) to the identified groups training the model with the
unsupervised phase data. In our study, multinomial logistic
regression (MNLR) was used. MNLR is a statistical classification
algorithm, an extension of binary logistic regression to multiclass
classification problems on multidimensional data® (the optimal
number of k from the previous step is the number of voxel
classes for this task), and it consists of 2 layers: a predictive
linear function (logit layer) and a softmax function (softmax
layer). The result of the supervised prediction is transferred to
the transformed data matrixes preserving their spatial origin and
predicted clusters are represented using color scales.

To evaluate the supervised learning task in this study, we used
as indicators the percentage of assigned classes (quotient of the
total classes assigned and the total number of clusters obtained in
the unsupervised phase for the same case; any assigned class
should represent at least 5% of the ROI, otherwise it is classified
as not valid), the number of classes overrepresented (i.e., the
number of classes with an assignment >150% in reference to the
same class from the unsupervised phase), and the degree of voxel
adjacency from the classes predicted.

Data Treatment

MRI acquisitions included the following manufacturers: MRI 1.5 T
(Ingenia [Philips Healthcare, Best, The Netherlands]); MRI 1.5 T
(Gyroscan Intera [Philips Systems, Best, The Netherlands]),
Magnetom Avanto 1.5 T (Siemens, Erlangen, Germany) and Trio
3T (Siemens, Erlangen, Germany).

The raw DICOM (Digital Imaging and Communications in
Medicine) data from hospital PACS (picture archiving and
communication system) was pseudonimized following the insti-
tutional protocol and, then, 3 phases of the data proceeded as
follows (Figure 1).

- Registration and reformatting: The process consists of aligning
multiple images with the aim of ensuring an anatomic spatial
correspondence of the intracranial space. For this process, the
general registration module BRAINS of 3D Slicer 4.11
(Brigham and Women’s Hospital, Boston, Massachusetts, USA)
was used reformatting to 200 slices, 320 X 320 pixels, and 0.75-
mm spacing. After the procedure, 8 datasets were obtained, 5
derived from sequences, 1 mask including only brain area and 2
including specific tumoral masks segmented with threshold
tools and validated by the authors (postsurgical residual tumor
areas were excluded from progression/pseudoprogression ROI).

- Brain extraction: For this process, the Swiss Skull Stripper tool
of 3D Slicer was used, creating a single mask based on the Tr1
sequence with 3D contrast (volumetric).

- Analysis with R in RStudio environment: consisting of the
sequential use of the following libraries and tools: oro.dicom,
EBImage, Ggplot2, RStoolbox, raster, rasterPCA, RStoolbox::-
histMatch, moments, nnet, Seurat, NbClust, among others.

Statistical Analysis

The outcome variables measured in the study and obtained in the
supervised learning phase are the percentage of assigned classes,
the number of overrepresented classes, and the global adjacency
of voxels of the same class. For the contrast of quantitative vari-
ables, the nonparametric Mann-Whitney U test was used.

Gross total resection is defined as a full complete resection of
the enhancing tumor, near-total resection is defined as 95%—g9%
of resection of the enhancing tumor and residual tumor <1 cm?,
and subtotal resection is defined as 80%—94% of extent of
resection of the enhancing tumor.™

RESULTS

Demographic Characteristics of the Population
For this study, 30 patients were included; 19 patients (63%) were
male and 11 patients (39%) were female, and the average age of the
patients was 58 years. Most patients were clinically stable at the
time of the progression/pseudoprogression MRI diagnosis (23/30
cases); 2 patients from the pseudoprogression group and 5 from
the progression group were clinically worsening by the time of the
second MRI according to medical records. In our subset of pa-
tients included in this study, in which only-biopsy intended,
elderly patients, and IDH-mutant tumors were excluded, the
extent of resection achieved was 70% for gross total resection,
27% for near-total resection, and 3% for subtotal resection.
Other baseline characteristics of the population including
gender, age, volume, and survival by groups are summarized in
Table 1.

PCA

After applying the PCA by pairs of MRI studies under the same
spatial framework, the PCs are obtained, which results in the same
number of datasets as sequences used in the study. Each PC
represents an uncorrelated distinguishable feature of the MRI
signal. A sample case is shown in Figures 2 and 3, when using
RGB (red, green, blue) model for colors, 1 channel for each PC;
the feature selection function is shown. PCA data for all
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components were used in both the supervised and the
unsupervised machine learning phase.

Clustering of the ROI

For the 30 cases, the optimal number of clusters obtained has a
mean of 9.37 (range, 5—14; standard deviation [SD], 2.7); there
was no difference in the number of clusters of the diagnostic MRI
for the progression group (9.12; SD, 2.60) and pseudoprogression
group (9.33; SD, 2.73) (P = 0.51, Mann-Whitney U test). This phase
required convergence from k to k—1 for 8 patients (3 patients in
the progression group and 5 patients in the pseudoprogression

group) because of noncompliance with the spatial segregation
criterion.

Supervised Learning

The voxel category prediction phase was performed using MNLR.
The indicators of the comparative findings of progression and
pseudoprogression are summarized in Table 2. There is a greater
number of assigned classes, fewer overrepresented classes, and
greater adjacency in the true tumor progression group. The
lesion volume in cases of true tumor progression was also
greater (13.55 and 8.66 cm? for the progression and
pseudoprogression groups, respectively; P = o0.01, Mann-

Registration

Principal Component Analysis

Figure 1. Steps for processing RAW image to principal
component analysis image assessment: Registration
of multiple sequences and multiple acquisitions of
magnetic resonance imaging, brain extraction applied,

e

Histogram registered normalization

Brain Extraction

ROI analysis

Unsupervised

$
=4

normalization using histogram-matching approach,
principal component analysis and region of interest
(RO analysis.
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Table 1. Baseline Characteristics of the Study Population

Age (years), mean (SD)

Gender (male/female)

Initial tumor volume (cm®), average (SD)

Progression/pseudoprogression volume (cm®), average (SD)

Overall survival (months), average (SD)

Symptomatic worsening previous to second magnetic resonance imaging, n (%)

Gross total resection/near-total resection/subtotal resection (n)

Progression (n = 15) Pseudoprogression (n = 15)
60.83 (9.95) 55.35 (11.72)
9:6 10:5

27.55 (8.23) 30.12 (10.76)
13.55 (3.55) 8.66 (2.12)
18.91 (8.32) 24.38 (10.34)

5/15 (33) 2/15 (13)

10/4/1 11/4/0

SD, standard deviation.

Whitney U test). Significance was established by Mann-Whitney U
test.

DISCUSSION

Glioblastoma multiforme takes its name “multiforme” from its
heterogeneous nature. Glioblastomas are formed by tumor cells
that differ in their morphology, genetics, and biological behavior,
which highlights their ability to resist conventional therapies that
have a strong impact on the patient’s prognosis.”*** Studies of

heterogeneity in contrast-enhanced T1 sequences have shown a
correlation with the survival prognosis of patients.*

Tumor progression of a glioblastoma arises as a new area of
contrast enhancement or the growth of a known residual enhancing
tumor, an indistinguishable feature of the process called pseudo-
progression, present in up to 50% of patients.’®*’ Contrast
enhancement of intracranial lesions is mainly caused by the
rupture of the blood-brain barrier, a nonspecific phenomenon of
tumor activity found in other processes such as infections or in-
flammatory diseases.”®*** In pseudoprogression, the phenomena

T1 TiC T2

PC2

Figure 2. Sample case of temporal glioblastoma. Top row, from left to right:
T1-weighted imaging (T1), contrast-enhanced T1-weighted imaging (T1C),
T2-weighted imaging (T2), fluid-attenuated inversion recovery (FLAIR),

FLAIR ADC

PC4 PCS5

apparent diffusion coefficient (ADC). Bottom row, from left to right:
principal component 1 (PC1), PC2, PC3, PC4, and PCb.
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Figure 3. RGB plots: sample case of temporal
glioblastoma. RGB plot from principal components: (A)
RGB plot for P1-PC3 (red, PC1; green, PC2; blue, PC3).

(B) RGB plot for PC2-PC4 (red, PC2; green, PC3; blue,
PC4). (C) RGB plot for PC3-PC5 (red, PC3; green, PC4;
blue, PCB).

that induce this increase in contrast enhancement are not fully
understood and could include an increase in vascular permeability
induced by hypoxia in relation to temozolamide,*® vascular
endothelial cell death secondary to radiation therapy, or
interaction of complex processes (inflammation, apoptosis,
vascular hyalinization, release of cytokines) without the
accumulation or proliferation of glioblastoma tumor cells.*®
Although the study of tumor progression focuses on the Tr
sequence after intravenous gadolinium contrast administration,
studies carried out on T2 sequences have shown notable differences
in the degree of tumor heterogeneity.>*° In addition, tumor
progression is also accompanied by changes in the signal of T2
and fluid-attenuated inversion recovery sequences.” In conventional
MRI sequences, contrast enhancement alone does not seem to be
a specific discriminator of pseudoprogression; other sequences
such as diffusion and perfusion seem to perform better,”*"
highlighting the nature of different cellularity and blood dynamics
for both processes.”” Several studies have shown that apparent
diffusion coefficient values (which inversely correlate with
diffusion-weighted images) are lower in recurrent tumors than in
radiation injuries,*>> probably because of the characteristic of greater
cellularity of tumor lesions. Cellularity is associated with reductions
in the extracellular space that lead to decreased diffusion of water
molecules.’® Although this characteristic is useful within the
contrast-enhanced areas, other tumoral areas such as cystic or
necrotic areas have different behaviors in diffusion.””® Because

multiple and redundant characteristics are found in different MRI
sequences, multidimensional transformation with feature extraction
using PCA helps to analyze and differentiate voxel-level characteris-
tics on neuroimaging.

In our study, we generated 5 new datasets using PCA, which, being
decorrelated, better represents differentiated cell populations or
physical characteristics of the tissues. Unsupervised learning has
shown usefulness for segmentation of tumors from normal brain
parenchyma,*#° and, therefore, a highly heterogeneous tumor such
as glioblastoma could be segmented using the same principle and
same statistical method. Moreover, determination of the optimal
number of intratumoral voxel populations by a gap statistic
method can be useful to represent multiclonality in radiologic
studies, and it is an aspect that we have not found in previous
glioblastoma MRI studies, but it is recognized as a measure of
heterogeneity and is widely studied in gene-expression studies.*

Contrary to the classic description of 3 glioblastoma zones (cystic,
necrotic, and solid),* in our study, we found that multidimensional
clustering by k-means can find up to 14 well-differentiated tumor
zones, confirmed by the adjacency criterion (a high degree of voxel
neighborhood from the same cluster), which does not seem to be a
simple statistical noise. In the supervised learning phase using
MNLR, patients with tumor progression present with better class
assignment, exceeding 9o% of the volume in most cases, with fewer
overrepresented classes and a higher degree of voxel adjacency. On
the other hand, in pseudoprogression, which is less heterogeneous,

Table 2. Supervised Learning Class Prediction Indicators on Magnetic Resonance Imaging from Progression and Pseudoprogression

Region of Interest Analysis

Progression (n = 15) Pseudoprogression (n = 15) P Value
Percentage of assigned classes, mean (SD) 95.34 (12.22) 34.45 (7.62) <0.01
Number of overrepresented classes, mean (SD) 0.22 (0.1) 22(0.3) <0.01
Global voxel class adjacency (%) 55.12 3353

SD, standard deviation.
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the task is solved generating an excess of assignments to a specific
class (overrepresenting), with a low degree of voxel adjacency and
lower occupation of all the classes to predict.

All these findings suggest that the tumor recurrences (true
progression) retain similar characteristics in its multidimensional
intensities compared with the baseline tumor. Pseudoprogression
presents more homogeneous populations with less variance and
more restricted populations compared with the baseline tumor.
Machine learning techniques showed usefulness for predicting
pseudoprogression at a voxel/ROI level. Representative sample
cases are presented in Figures 4 and 5.

As limitations of the study, issues arising when comparing
different brain magnetic resonance images are well described in
the literature. Various studies use different methods of

registration and brain extraction,**** which generate differences
in datasets. The normalization method between MRI is also
relevant (e.g., RAVEL [Removal of Artificial Voxel Effect by
Linear Regression], WhiteStripe, histogram matching, z-
score),* and no method has shown superior performance in
brain tumors. In our study, we used the histogram-matching
method, which seems to have better performance in neoplastic
lesions from other locations,*® and we avoid using methods
based on maximum-minimum and methods referenced in
white matter, because brain edema, tumor infiltration, and
gadolinium enhancement can generate large deviations and
distant outliers in intensities from one acquisition to another.
Despite the potential limitations of the technique, our data
performed well with the technique used.

Figure 4. Sample case of tumor pseudoprogression. (A) Baseline tumor
showing 6 tumor zones. (B) Heatmap of voxel-pairwise-distances from
tumor region. (C) Pseudoprogression showing 2 of 6 predicted classes

Voxel

Voxel

Voxel

Distance
15

(both overrepresented). (D) Heatmap of voxel-pairwise-distances from
pseudotumor region showing less heterogeneity and 1 large cluster and 3
small clusters.
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Figure 5. Sample case of tumor progression. (A) Baseline tumor showing 6
tumor zones. (B) Heatmap of voxel-pairwise-distances from tumoral region.
(C) True progression showing 6 of 6 predicted classes. (D) Heatmap of

voxel-pairwise-distances from tumoral region showing multiple
well-distributed clusters.

In addition, the small number of cases constitutes a limitation
in our study. The search for homogeneity of the cases in search of
consistent results necessitates performing multicenter studies,
which will allow analysis to be carried out in more variables
including extent of resection, survival, and response to specific
treatments in addition to analysis of astronomic numbers of
voxels. Moreover, as the amount of processable information in-
creases in hospital datasets, studies will require a higher
computational effort, making it necessary to create high-level
processing and storage servers to conduct higher-quality studies.

CONCLUSIONS

®m Brain MRI with PCA and machine learning techniques allow
effective discrimination of tumor and pseudotumor at a voxel/
ROI level.

m Unsupervised clustering of glioblastoma showed a high degree
of heterogeneity with up to 14 well-differentiated tumoral areas.

m Tumoral progression preserves most of the multidimensional
characteristics from the baseline tumor, which results in a
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