55,284 research outputs found

    Theory and simulation of the confined Lebwohl-Lasher model

    Get PDF
    We discuss the Lebwohl-Lasher model of nematic liquid crystals in a confined geometry, using Monte Carlo simulation and mean-field theory. A film of material is sandwiched between two planar, parallel plates that couple to the adjacent spins via a surface strength ϵs\epsilon_s. We consider the cases where the favoured alignments at the two walls are the same (symmetric cell) or different (asymmetric or hybrid cell). In the latter case, we demonstrate the existence of a {\it single} phase transition in the slab for all values of the cell thickness. This transition has been observed before in the regime of narrow cells, where the two structures involved correspond to different arrangements of the nematic director. By studying wider cells, we show that the transition is in fact the usual isotropic-to-nematic (capillary) transition under confinement in the case of antagonistic surface forces. We show results for a wide range of values of film thickness, and discuss the phenomenology using a mean-field model.Comment: 40 pages 19 figures (preprint format). Part of the text and some figures were modified. New figure was include

    A strategy for the design of skyrmion racetrack memories

    Full text link
    Magnetic storage based on racetrack memory is very promising for the design of ultra-dense, low-cost and low-power storage technology. Information can be coded in a magnetic region between two domain walls or, as predicted recently, in topological magnetic objects known as skyrmions. Here, we show the technological advantages and limitations of using Bloch and Neel skyrmions manipulated by spin current generated within the ferromagnet or via the spin-Hall effect arising from a non-magnetic heavy metal underlayer. We found that the Neel skyrmion moved by the spin-Hall effect is a very promising strategy for technological implementation of the next generation of skyrmion racetrack memories (zero field, high thermal stability, and ultra-dense storage). We employed micromagnetics reinforced with an analytical formulation of skyrmion dynamics that we developed from the Thiele equation. We identified that the excitation, at high currents, of a breathing mode of the skyrmion limits the maximal velocity of the memory

    Gamma-Ray Bursts Black hole accretion disks as a site for the vp-process

    Full text link
    We study proton rich nucleosynthesis in windlike outflows from gamma-ray bursts accretion disks with the aim to determine if such outflows are a site of the vp-process. The efficacy of this vp-process depends on thermodynamic and hydrodynamic factors. We discuss the importance of the entropy of the material, the outflow rate, the initial ejection point and accretion rate of the disk. In some cases the vp-process pushes the nucleosynthesis out to A~100 and produces light p-nuclei. However, even when these nuclei are not produced, neutrino induced interactions can significantly alter the abundance pattern and cannot be neglected.Comment: 9 pages, 16 figures, accepted for publication in Phys. Rev.

    Moments of inertia for solids of revolution and variational methods

    Full text link
    We present some formulae for the moments of inertia of homogeneous solids of revolution in terms of the functions that generate the solids. The development of these expressions exploits the cylindrical symmetry of these objects, and avoids the explicit use of multiple integration, providing an easy and pedagogical approach. The explicit use of the functions that generate the solid gives the possibility of writing the moment of inertia as a functional, which in turn allows us to utilize the calculus of variations to obtain a new insight into some properties of this fundamental quantity. In particular, minimization of moments of inertia under certain restrictions is possible by using variational methods.Comment: 6 pages, 6 figures, LaTeX2e. Two paragraphs added. Minor typos corrected. Version to appear in European Journal of Physic

    High energy neutrino oscillation at the presence of the Lorentz Invariance Violation

    Full text link
    Due to quantum gravity fluctuations at the Planck scale, the space-time manifold is no longer continuous, but discretized. As a result the Lorentz symmetry is broken at very high energies. In this article, we study the neutrino oscillation pattern due to the Lorentz Invariance Violation (LIV), and compare it with the normal neutrino oscillation pattern due to neutrino masses. We find that at very high energies, neutrino oscillation pattern is very different from the normal one. This could provide an possibility to study the Lorentz Invariance Violation by measuring the oscillation pattern of very high energy neutrinos from a cosmological distance.Comment: 11 pages, 6 figure
    • …
    corecore