3,961 research outputs found

    Localization of Fulicin-like Immunoreactivity in the Central Nervous System and Periphery of Biomphalaria glabrata, an Intermediate Host for Schistosomiasis

    Full text link
    An estimate of about ten percent of the population worldwide live at risk of contracting the parasitic disease schistosomiasis, or “snail fever”. The digenetic trematode worm species Schistosoma mansoni that is responsible for causing the most common form of intestinal schistosomiasis requires the freshwater snail Biomphalaria glabrata to serve as its primary intermediate host, where it multiplies and develops into its cercarial form that is infectious to humans. Parasitic castration and parasitic gigantism are among some of the profound behavioral changes that the infection of B. glabrata by S. mansoni is known to cause. For this reason, a neural transcriptomics approach was undertaken to determine precursor prohormones that could encode neuropeptides implicated in Biomphalaria reproductive and feeding behaviors. A transcript (1616 nucleotides) was found to encode a putative precursor polypeptide (316 aminoacids) that could give way to the neuropeptide fulicin (Phe–D-Asn-Glu-Phe-Val-NH2; Ohta et al. 1991; Yasuma Kamatani et al. 1995) and five additional related peptides. For this investigation, affinity purified polyclonal antibodies (rabbit) were developed against the anticipated fulicin neuropeptide. Fulicin-like immunoreactivity was observed throughout the central nervous system (CNS) with distinct neurons and clusters on the ventral and dorsal surfaces, as well as in peripheral tissues. Fulicin-like cells of both large and small diameter were present on the dorsal and ventral surfaces of the buccal ganglion. In addition dispersed clusters of small diameter cells were observed in the cerebral and pedal ganglia. However, in the right pleural ganglion no fulicin-like neurons were present, although it was rich in immunoreactive fibers. Within the left parietal and visceral ganglia, clusters of large prominent cells appeared to give rise to axons projecting to the anal and intestinal nerves. Additionally, peripheral tissue of B. glabrata, specifically regions of the mantle, lip and tentacle were rich in fulicin-like immunoreactive fibers and cell bodies. These results suggest that fulicin and other peptides derived from the fulicin precursor could regulate behaviors related to food intake, reproduction, and growth that are altered during the course of infection in this host-parasite system

    The prion protein protease sensitivity, stability and seeding activity in variably protease sensitive prionopathy brain tissue suggests molecular overlaps with sporadic Creutzfeldt-Jakob disease

    Get PDF
    INTRODUCTION: Variably protease sensitive prionopathy (VPSPr) is a recently described, sporadic human prion disease that is pathologically and biochemically distinct from the currently recognised sporadic Creutzfeldt-Jakob disease (sCJD) subtypes. The defining biochemical features of the abnormal form of the prion protein (PrP(Sc)) in VPSPr are increased sensitivity to proteolysis and the presence of an N- and C-terminally cleaved ~8 kDa protease resistant PrP(Sc) (PrP(res)) fragment. The biochemical and neuropathological profile of VPSPr has been proposed to resemble either Gerstmann–Sträussler–Scheinker syndrome (GSS) or familial CJD with the PRNP-V180I mutation. However, in some cases of VPSPr two protease resistant bands have been observed in Western blots that co-migrate with those of type 2 PrP(res), suggesting that a proportion of the PrP(Sc) present in VPSPr has properties similar to those of sCJD. RESULTS: Here, we have used conformation dependent immunoassay to confirm the presence of PrP(Sc) in VPSPr that is more protease sensitive compared with sCJD. However, CDI also shows that a proportion of PrP(Sc) in VPSPr resists PK digestion of its C-terminus, distinguishing it from GSS associated with ~8 kDa PrP(res), and showing similarity to sCJD. Intensive investigation of a single VPSPr case with frozen tissue from multiple brain regions shows a broad, region-specific spectrum of protease sensitivity and differential stability of PrP(Sc) in the absence of PK treatment. Finally, using protein misfolding cyclic amplification and real-time quaking induced conversion, we show that VPSPr PrP(Sc) has the potential to seed conversion in vitro and that seeding activity is dispersed through a broad range of aggregate sizes. We further propose that seeding activity is associated with the ~19 and ~23 kDa PrP(res) rather than the ~8 kDa fragment. CONCLUSIONS: Therefore, PrP(Sc) in VPSPr is heterogeneous in terms of protease sensitivity and stability to denaturation with the chaotrope GdnHCl and includes a proportion with similar properties to that found in sCJD. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s40478-014-0152-4) contains supplementary material, which is available to authorized users

    Differential Epigenetic Compatibility of qnr Antibiotic Resistance Determinants with the Chromosome of Escherichia coli

    Get PDF
    Environmental bacteria harbor a plethora of genes that, upon their horizontal transfer to new hosts, may confer resistance to antibiotics, although the number of such determinants actually acquired by pathogenic bacteria is very low. The founder effect, fitness costs and ecological connectivity all influence the chances of resistance transfer being successful. We examined the importance of these bottlenecks using the family of quinolone resistance determinants Qnr. The results indicate the epigenetic compatibility of a determinant with the host genome to be of great importance in the acquisition and spread of resistance. A plasmid carrying the widely distributed QnrA determinant was stable in Escherichia coli, whereas the SmQnr determinant was unstable despite both proteins having very similar tertiary structures. This indicates that the fitness costs associated with the acquisition of antibiotic resistance may not derive from a non-specific metabolic burden, but from the acquired gene causing specific changes in bacterial metabolic and regulatory networks. The observed stabilization of the plasmid encoding SmQnr by chromosomal mutations, including a mutant lacking the global regulator H-NS, reinforces this idea. Since quinolones are synthetic antibiotics, and since the origin of QnrA is the environmental bacterium Shewanella algae, the role of QnrA in this organism is unlikely to be that of conferring resistance. Its evolution toward this may have occurred through mutations or because of an environmental change (exaptation). The present results indicate that the chromosomally encoded Qnr determinants of S. algae can confer quinolone resistance upon their transfer to E. coli without the need of any further mutation. These results suggest that exaptation is important in the evolution of antibiotic resistance

    The Passive Yet Successful Way of Planktonic Life: Genomic and Experimental Analysis of the Ecology of a Free-Living Polynucleobacter Population

    Get PDF
    Background: The bacterial taxon Polynucleobacter necessarius subspecies asymbioticus represents a group of planktonic freshwater bacteria with cosmopolitan and ubiquitous distribution in standing freshwater habitats. These bacteria comprise,1 % to 70 % (on average about 20%) of total bacterioplankton cells in various freshwater habitats. The ubiquity of this taxon was recently explained by intra-taxon ecological diversification, i.e. specialization of lineages to specific environmental conditions; however, details on specific adaptations are not known. Here we investigated by means of genomic and experimental analyses the ecological adaptation of a persistent population dwelling in a small acidic pond. Findings: The investigated population (F10 lineage) contributed on average 11 % to total bacterioplankton in the pond during the vegetation periods (ice-free period, usually May to November). Only a low degree of genetic diversification of the population could be revealed. These bacteria are characterized by a small genome size (2.1 Mb), a relatively small number of genes involved in transduction of environmental signals, and the lack of motility and quorum sensing. Experiments indicated that these bacteria live as chemoorganotrophs by mainly utilizing low-molecular-weight substrates derived from photooxidation of humic substances. Conclusions: Evolutionary genome streamlining resulted in a highly passive lifestyle so far only known among free-living bacteria from pelagic marine taxa dwelling in environmentally stable nutrient-poor off-shore systems. Surprisingly, such a lifestyle is also successful in a highly dynamic and nutrient-richer environment such as the water column of the investigate

    Self-healing materials for soft-matter machines and electronics

    Get PDF
    The emergence of soft machines and electronics creates new opportunities to engineer robotic systems that are mechanically compliant, deformable, and safe for physical interaction with the human body. Progress, however, depends on new classes of soft multifunctional materials that can operate outside of a hard exterior and withstand the same real-world conditions that human skin and other soft biological materials are typically subjected to. As with their natural counterparts, these materials must be capable of self-repair and healing when damaged to maintain the longevity of the host system and prevent sudden or permanent failure. Here, we provide a perspective on current trends and future opportunities in self-healing soft systems that enhance the durability, mechanical robustness, and longevity of soft-matter machines and electronics

    Gamma probes and their use in tumor detection in colorectal cancer

    Get PDF
    The purpose of this article is to summarize the role of gamma probes in intraoperative tumor detection in patients with colorectal cancer (CRC), as well as provide basic information about the physical and practical characteristics of the gamma probes, and the radiopharmaceuticals used in gamma probe tumor detection. In a significant portion of these studies, radiolabeled monoclonal antibodies (Mabs), particularly 125I labeled B72.3 Mab that binds to the TAG-72 antigen, have been used to target tumor. Studies have reported that intraoperative gamma probe radioimmunodetection helps surgeons to localize primary tumor, clearly delineate its resection margins and provide immediate intraoperative staging. Studies also have emphasized the value of intraoperative gamma probe radioimmunodetection in defining the extent of tumor recurrence and finding sub-clinical occult tumors which would assure the surgeons that they have completely removed the tumor burden. However, intraoperative gamma probe radioimmunodetection has not been widely adapted among surgeons because of some constraints associated with this technique. The main difficulty with this technique is the long period of waiting time between Mab injection and surgery. The technique is also laborious and costly. In recent years, Fluorine-18-2-fluoro-2-deoxy-D-glucose (18F-FDG) use in gamma probe tumor detection surgery has renewed interest among surgeons. Preliminary studies during surgery have demonstrated that use of FDG in gamma probe tumor detection during surgery is feasible and useful

    Distinguishing Asthma Phenotypes Using Machine Learning Approaches.

    Get PDF
    Asthma is not a single disease, but an umbrella term for a number of distinct diseases, each of which are caused by a distinct underlying pathophysiological mechanism. These discrete disease entities are often labelled as asthma endotypes. The discovery of different asthma subtypes has moved from subjective approaches in which putative phenotypes are assigned by experts to data-driven ones which incorporate machine learning. This review focuses on the methodological developments of one such machine learning technique-latent class analysis-and how it has contributed to distinguishing asthma and wheezing subtypes in childhood. It also gives a clinical perspective, presenting the findings of studies from the past 5 years that used this approach. The identification of true asthma endotypes may be a crucial step towards understanding their distinct pathophysiological mechanisms, which could ultimately lead to more precise prevention strategies, identification of novel therapeutic targets and the development of effective personalized therapies

    Validation of control genes and a standardised protocol for quantifying gene expression in the livers of C57BL/6 and ApoE−/− mice

    Get PDF
    The liver plays a critical role in food and drug metabolism and detoxification and accordingly influences systemic body homeostasis in health and disease. While the C57BL/6 and ApoE−/− mouse models are widely used to study gene expression changes in liver disease and metabolism, currently there are no validated stably expressed endogenous genes in these models, neither is it known how gene expression varies within and across liver lobes. Here we show regional variations in the expression of Ywhaz, Gak, Gapdh, Hmbs and Act-β endogenous genes across a liver lobe; Using homogeneous samples from the four liver lobes of 6 C57BL/6 mice we tested the stability of 12 endogenous genes and show that Act-β and Eif2-α are the most stably expressed endogenous genes in all four lobes and demonstrate lobular differences in the expression of Abca1 cholesterol efflux gene. These results suggest that sampling from a specified homogeneous powdered liver lobe is paramount in enhancing data reliability and reproducibility. The stability of the 12 endogenous genes was further tested using homogeneous samples of left liver lobes from 20 ApoE−/− mice on standard or high polyphenol diets. Act-β and Ywhaz are suitable endogenous genes for gene expression normalisation in this mouse model
    • …
    corecore