33 research outputs found

    Early and long-lasting alteration of effector CD45RA(-)Foxp3(high) regulatory T-cell homeostasis during HIV infection.: Effector Treg are persistently altered during HIV infection

    No full text
    International audienceRegulatory T-cell (Treg) quantification in human immunodeficiency virus (HIV) infection remains ill defined because of the lack of reliable specific markers to identify human Tregs and the diversity of clinical stages of HIV infection. Using a recently described Treg identification strategy based on CD45RA and Foxp3 expression, we performed an extensive quantification of total, naive (CD45RA(+)Foxp3(low)), and effector (CD45RA(-)Foxp3(high)) Tregs in different contexts of HIV infection: primary HIV infection, long-term viremic patients, aviremic patients treated with highly active antiretroviral therapy, and HIV controllers. We showed that although total Treg percentages were mildly affected by HIV infection, Treg absolute numbers were significantly reduced in all groups studied. We demonstrated that although naive Treg numbers were essentially preserved, effector Tregs were consistently affected during HIV infection. Finally, we demonstrated that effector but not total or naive Treg numbers were negatively correlated with the magnitude of HIV-specific CD8 T-cell responses

    Identification of a particular HIV-specific CD8+ T-cell subset with a CD27+ CD45RO−/RA+ phenotype and memory characteristics after initiation of HAART during acute primary HIV infection

    No full text
    International audienceAbstract CD8+ T cells play an important role in controlling viral infections. Defective CD8+ T-cell responses during HIV infection could contribute to viral persistence. Early initiation of highly active antiretroviral therapy during acute primary HIV infection helps to preserve HIV-specific immune responses. Here, we describe a particular CD27+ CD45RO−/RA+ HIV-specific CD8+ T cell in participants treated early during the primary infection. These cells, which were present at a very low frequency during primary HIV infection, increased markedly after early treatment, whereas their frequency remained unchanged in untreated participants and in participants treated later. These nonnaive antigen-experienced cells are in a resting state and have characteristics of long-lived memory cells. They also possess direct effector capabilities, such as cytokine production, and are able to proliferate and to acquire cytotoxic functions on reactivation. Our results suggest that these HIV-specific CD27+ CD45RO−/RA+ CD8+ T cells, observed when early viral replication is inhibited, form a pool of resting cells with memory characteristics

    CD8 +

    No full text

    Potential role for HIV-specific CD38-/HLA-DR+ CD8+ T cells in viral suppression and cytotoxicity in HIV controllers.

    No full text
    BACKGROUND:HIV controllers (HIC) are rare HIV-1-infected patients who exhibit spontaneous viral control. HIC have high frequency of CD38-/HLA-DR+ HIV-specific CD8+ T cells. Here we examined the role of this subset in HIC status. MATERIALS AND METHODS:We compared CD38-/HLA-DR+ CD8+ T cells with the classical CD38+/HLA-DR+ activated phenotype in terms of 1) their activation status, reflected by CD69, CD25, CD71, CD40 and Ki67 expression, 2) functional parameters: Bcl-2 expression, proliferative capacity, and IFN-γ and IL-2 production, and 3) cytotoxic activity. We also investigated how this particular profile is generated. RESULTS:Compared to CD38+/HLA-DR+ cells, CD38-/HLA-DR+ cells exhibited lower expression of several activation markers, better survival capacity (Bcl-2 MFI, 367 [134-462] vs 638 [307-747], P = 0.001), higher frequency of polyfunctional cells (15% [7%-33%] vs 21% [16%-43%], P = 0.0003), greater proliferative capacity (0-fold [0-2] vs 3-fold [2]-[11], P = 0.007), and higher cytotoxicity in vitro (7% [3%-11%] vs 13% [6%-22%], P = 0.02). The CD38-/HLA-DR+ profile was preferentially generated in response to low viral antigen concentrations. CONCLUSIONS:These data highlight the role of CD38-/HLA-DR+ HIV-specific CD8+ T cell cytotoxicity in HIC status and provide insights into the mechanism by which they are generated. Induction of this protective CD8+ subset may be important for vaccine strategies

    HIV controllers exhibit potent CD8 T cell capacity to suppress HIV infection ex vivo and peculiar cytotoxic T lymphocyte activation phenotype

    No full text
    International audienceSome rare HIV-1-infected individuals, referred to as HIV controllers (HIC), have persistently undetectable plasma viral load in the absence of therapy. This control of HIV-1 replication has been associated with a strong, multifunctional specific CD8(+) T cell response. However, no direct link between this immune response and the control of viremia has so far been provided. We investigated parameters of specific CD8(+) T cell response and in vitro susceptibility to HIV-1 infection in 11 HIC. We found high frequencies of HIV-specific CD8(+) T cells. Interestingly, these cells expressed the activation marker HLA-DR but not CD38. This unique phenotype differentiates HIV-specific CD8(+) T cells from HIC and noncontroller subjects and likely reflects a high potential to expand upon exposure to antigen and a capacity to exert effector functions. Accordingly, although CD4(+) T cells from HIC were fully susceptible to HIV-1 superinfection, their CD8(+) T cells effectively suppressed HIV-1 infection. Remarkably, this potent anti-HIV activity was observed without prior stimulation of CD8(+) T cells. This activity was not mediated by secreted inhibitory factors but was due to the elimination of infected CD4(+) T cells and was observed only with autologous CD4(+) T cells, indicating an HLA-restricted cytotoxic mechanism. This constitutive antiviral capacity of CD8(+) T cells could account for the control of viral replication in HIC
    corecore