64 research outputs found

    Gross motor coordination and weight status of Portuguese children aged 6-14 years

    Get PDF
    Objectives: To construct age- and gender-specific percentiles for gross motor coordination (MC) tests and to explore differences in gross MC in normal-weight, overweight and obese children. Methods: Data are from the "Healthy Growth of Madeira Study", a cross-sectional study carried out in children, aged 6–14 years. All 1,276 participants, 619 boys and 657 girls, were assessed for gross MC (Korperkoordinations Test fur Kinder, KTK), anthropometry (height and body mass), physical activity (Baecke questionnaire) and socioeconomic status (SES). Centile curves for gross MC were obtained for boys and girls separately using generalized additive models for location, scale and shape. Results: A significant main effect for age was found in walking backwards and moving sideways. Boys performed significantly better than girls on moving sideways. At the upper limit of the distributions, interindividual variability was higher in hopping on one leg (girls) and jumping and moving sideways (boys and girls). One-way ANCOVA, controlling for age, physical activity and SES, indicated that normal-weight children scored significantly better than their obese peers in all gross MC tests. Overweight boys and girls also scored significantly better than their obese colleagues in some MC tests. Conclusions: These centile curves can be used as reference data in Portuguese children and youth, aged 6–14 years. Being overweight or obese was a major limitation in MC tests and, therefore, of the children’s health- and performance related physical fitness

    The Genetic Background of Metabolic Trait Clusters in Children and Adolescents

    Get PDF
    Background: It is well known that metabolic risk factors of cardiovascular diseases are correlated, but the background of this clustering in children is more poorly known than in adults. Thus, we studied the contribution of genetic and environmental factors to the clustering of metabolic traits in childhood and adolescence. Data and Methods: Nine metabolic traits were measured in 214 complete twin pairs aged 3-18 years in the Autonomous Region of Madeira, Portugal, in 2007 and 2008. The variation of and covariations between the traits were decomposed into genetic and environmental components by using classical genetic twin modeling. Results: A model, including additive genetic and environmental factors unique for each twin individual, explained the variation of metabolic factors well. Under this model, the heritability estimates varied from 0.47 (systolic blood pressure in children under 12 years of age) to 0.91 (high-density lipoprotein [HDL] cholesterol in adolescents 12 years of age or older). The most systematic correlations were found between adiposity (body mass index and waist circumference) and blood lipids (HDL cholesterol, low-density lipoprotein cholesterol, and triglycerides), as well as blood pressure. These correlations were mainly explained by common genetic factors. Conclusions: Our results suggest that obesity, in particular, is behind the clustering of metabolic factors in children and adolescents. Both general and abdominal obesity partly share the same genetic background as blood lipids and blood pressure. Obesity prevention early in childhood is important in reducing the risk of metabolic diseases in adulthood.Peer reviewe

    Skeletal maturity and socio-economic status in portuguese children and youths: the Madeira growth study

    Get PDF
    Skeletal maturity is used to evaluate biological maturity status. Information about the association between socio-economic status (SES) and skeletal maturity is limited in Portugal. Aims: The aim of this study is to document the skeletal maturity of youths in Madeira and to evaluate variation in maturity associated with SES. Subjects and methods: The study involved 507 subjects (256 boys and 251 girls) from the Madeira Growth Study, a mixed-longitudinal study of ïŹve cohorts (8, 10, 12, 14 and 16 years of age) followed at yearly intervals over 3 years (1996–1998). A total of 1493 observations were made. Skeletal age was estimated from radiographs of the hand and wrist using the Tanner–Whitehouse 2 method (TW2). Social class rankings were based on GraïŹ€ar’s (1956) method. Five social rankings were subsequently grouped into three SES categories: high, average and low. Results: Median for the radius, ulna and short ïŹnger bones (RUS scores) in the total sample of boys and girls increased curvilinearly across age whereas median for the 7 (without pisiform) carpal bones (Carpal scores) increased almost linearly. The 20-bone maturity scores demonstrated distinctive trends by gender: the medians for boys increased almost linearly while the medians for girls increased curvilinearly. SES diïŹ€erences were minimal. Only among children aged 10–11 years were high SES boys and girls advanced in skeletal maturity. Madeira adolescents were advanced in skeletal maturity compared with Belgian reference values. Conclusion: The data suggests population variation in TW2 estimates of skeletal maturation. Skeletal maturity was not related to SES in youths from Madeira

    Genetic, Maternal and Placental Factors in the Association between Birth Weight and Physical Fitness: A Longitudinal Twin Study

    Get PDF
    Background Adult cardiorespiratory fitness and muscle strength are related to all-cause and cardiovascular mortality. Both are possibly related to birth weight, but it is unclear what the importance is of genetic, maternal and placental factors in these associations. Design Peak oxygen uptake and measures of strength, flexibility and balance were obtained yearly during adolescence (10–18 years) in 114 twin pairs in the Leuven Longitudinal Twin Study. Their birth weights had been collected prospectively within the East Flanders Prospective Twin Survey. Results We identified linear associations between birth weight and adolescent vertical jump (b = 1.96 cm per kg birth weight, P = 0.02), arm pull (b = 1.85 kg per kg birth weight P = 0.03) and flamingo balance (b = −1.82 attempts to stand one minute per kg birth weight, P = 0.03). Maximum oxygen uptake appeared to have a U-shaped association with birth weight (the smallest and largest children had the lowest uptake, P = 0.01), but this association was no longer significant after adjustment for parental BMI. Using the individual twin’s deviation from his own twin pair’s average birth weight, we found positive associations between birth weight and adolescent vertical jump (b = 3.49, P = 0.0007) and arm pull (b = 3.44, P = 0.02). Δ scores were calculated within the twin pairs as first born twin minus second born twin. Δ birth weight was associated with Δ vertical jump within MZ twin pairs only (b = 2.63, P = 0.009), which indicates importance of placental factors. Conclusions We found evidence for an association between adolescent physical performance (strength, balance and possibly peak oxygen uptake) and birth weight. The associations with vertical jump and arm pull were likely based on individual, more specifically placental (in the case of vertical jump) factors. Our results should be viewed as hypothesis-generating and need confirmation, but potentially support preventive strategies to optimize birth weight, for example via placental function, to target later fitness and health

    Tracking of fatness during childhood, adolescence and young adulthood: a 7-year follow-up study in Madeira Island, Portugal

    Get PDF
    Aims: Investigating tracking of fatness from childhood to adolescence, early adolescence to young adulthood and late adolescence to young adulthood. Subjects and methods: Participants from the Madeira Growth Study were followed during an average period of 7.2 years. Height, body mass, skin-folds and circumferences were measured, nine health- and performance-related tests were administered and the Baecke questionnaire was used to assess physical activity. Skeletal maturity was estimated using the TW3 method. Results: The prevalence of overweight plus obesity ranged from 8.2–20.0% at baseline and from 20.4–40.0% at followup, in boys. Corresponding percentages for girls were 10.6– 12.0% and 13.2–18.0%. Inter-age correlations for fatness indicators ranged from 0.43–0.77. BMI, waist circumference and sum of skin-folds at 8, 12 and 16-years old were the main predictors of these variables at 15, 19 and 23-years old, respectively. Strength, muscular endurance and aerobic ïŹtness were negatively related to body fatness. Physical activity and maturation were independently associated with adolescent (15 years) and young adult (19 years) fatness. Conclusions: Over 7.2 years, tracking was moderate-to-high for fatness. Variance was explained by fatness indicators and to a small extent by physical ïŹtness, physical activity and maturation

    History-dependent force, angular velocity and muscular endurance in ACTN3 genotypes

    No full text
    This study aimed at determining the influence of the ACTN3 R577X polymorphism on muscle strength and muscle endurance in non-athletic young men

    Role of alpha-actinin-3 in contractile properties of human single muscle fibers: a case series study in paraplegics.

    No full text
    A common nonsense polymorphism in the ACTN3 gene results in the absence of α-actinin-3 in XX individuals. The wild type allele has been associated with power athlete status and an increased force output in numeral studies, though the mechanisms by which these effects occur are unclear. Recent findings in the Actn3(-/-) (KO) mouse suggest a shift towards 'slow' metabolic and contractile characteristics of fast muscle fibers lacking α-actinin-3. Skinned single fibers from the quadriceps muscle of three men with spinal cord injury (SCI) were tested regarding peak force, unloaded shortening velocity, force-velocity relationship, passive tension and calcium sensitivity. The SCI condition induces an 'equal environment condition' what makes these subjects ideal to study the role of α-actinin-3 on fiber type expression and single muscle fiber contractile properties. Genotyping for ACTN3 revealed that the three subjects were XX, RX and RR carriers, respectively. The XX carrier's biopsy was the only one that presented type I fibers with a complete lack of type II(x) fibers. Properties of hybrid type II(a)/II(x) fibers were compared between the three subjects. Absence of α-actinin-3 resulted in less stiff type II(a)/II(x) fibers. The heterozygote (RX) exhibited the highest fiber diameter (0.121±0.005 mm) and CSA (0.012±0.001 mm(2)) and, as a consequence, the highest peak force (2.11±0.14 mN). Normalized peak force was similar in all three subjects (P = 0.75). Unloaded shortening velocity was highest in R-allele carriers (P<0.001). No difference was found in calcium sensitivity. The preservation of type I fibers and the absence of type II(x) fibers in the XX individual indicate a restricted transformation of the muscle fiber composition to type II fibers in response to long-term muscle disuse. Lack of α-actinin-3 may decrease unloaded shortening velocity and increase fiber elasticity

    Role of alpha-actinin-3 in contractile properties of human single muscle fibers: a case series study in paraplegics.

    Get PDF
    A common nonsense polymorphism in the ACTN3 gene results in the absence of α-actinin-3 in XX individuals. The wild type allele has been associated with power athlete status and an increased force output in numeral studies, though the mechanisms by which these effects occur are unclear. Recent findings in the Actn3(-/-) (KO) mouse suggest a shift towards 'slow' metabolic and contractile characteristics of fast muscle fibers lacking α-actinin-3. Skinned single fibers from the quadriceps muscle of three men with spinal cord injury (SCI) were tested regarding peak force, unloaded shortening velocity, force-velocity relationship, passive tension and calcium sensitivity. The SCI condition induces an 'equal environment condition' what makes these subjects ideal to study the role of α-actinin-3 on fiber type expression and single muscle fiber contractile properties. Genotyping for ACTN3 revealed that the three subjects were XX, RX and RR carriers, respectively. The XX carrier's biopsy was the only one that presented type I fibers with a complete lack of type II(x) fibers. Properties of hybrid type II(a)/II(x) fibers were compared between the three subjects. Absence of α-actinin-3 resulted in less stiff type II(a)/II(x) fibers. The heterozygote (RX) exhibited the highest fiber diameter (0.121±0.005 mm) and CSA (0.012±0.001 mm(2)) and, as a consequence, the highest peak force (2.11±0.14 mN). Normalized peak force was similar in all three subjects (P = 0.75). Unloaded shortening velocity was highest in R-allele carriers (P<0.001). No difference was found in calcium sensitivity. The preservation of type I fibers and the absence of type II(x) fibers in the XX individual indicate a restricted transformation of the muscle fiber composition to type II fibers in response to long-term muscle disuse. Lack of α-actinin-3 may decrease unloaded shortening velocity and increase fiber elasticity

    The stiffness response of type IIa fibres after eccentric exercise-induced muscle damage is dependent on ACTN3 r577X polymorphism.

    No full text
    The aim of the study was to determine the effect of α-actinin-3 (ACTN3) deficiency (XX) on muscle damage induced by an eccentric exercise bout. In this purpose, 4 RR and 4 XX individuals performed an intensive eccentric knee flexion exercise on an isokinetic dynamometer. Muscle biopsies, blood and pain scores were taken before and after the exercise to determine the extent of the exercise-induced damage and the effect of the ACTN3 R577X polymorphism. Maximal isometric strength of the quadriceps and single fibre properties were compared before and after the exercise. The drop in maximal isometric strength of the quadriceps at 45° knee flexion following the eccentric exercise bout was on average 37% 24 h post-exercise. The decrease in force was also apparent in isolated type II fibres (8%; P = 0.02), but not in type I fibres (P = 0.88). Creatine kinase and myoglobin plasma levels increased in all participants at least by 55% and 87%, respectively (P < 0.05). In addition, mRNA levels of markers for muscle regeneration and muscle remodelling increased after the eccentric exercise (P < 0.05), however, independently from ACTN3 R577X genotype. The mRNA level of nuclear factor of activated T-cells 1 (NFATc1) decreased after the eccentric exercise only in XX genotypes (P < 0.05). The stiffness of type II, but not type I muscle fibres increased only in RR individuals after the eccentric exercise (P < 0.05). While no major effect of α-actinin-3 deficiency on susceptibility to muscle damage was found acutely, the increased stiffness response in fast RR fibres might be a protection mechanism from muscle damage during a subsequent eccentric exercise bout
    • 

    corecore