14 research outputs found

    Chikungunya Outbreak in the Republic of the Congo, 2019—Epidemiological, Virological and Entomological Findings of a South-North Multidisciplinary Taskforce Investigation

    Get PDF
    The Republic of Congo (RoC) declared a chikungunya (CHIK) outbreak on 9 February 2019. We conducted a ONE-Human-Animal HEALTH epidemiological, virological and entomological investigation. Methods: We collected national surveillance and epidemiological data. CHIK diagnosis was based on RT-PCR and CHIKV-specific antibodies. Full CHIKV genome sequences were obtained by Sanger and MinION approaches and Bayesian tree phylogenetic analysis was performed. Mosquito larvae and 215 adult mosquitoes were collected in different villages of Kouilou and Pointe-Noire districts and estimates of Aedes (Ae.) mosquitos’ CHIKV-infectious bites obtained. We found two new CHIKV sequences of the East/Central/South African (ECSA) lineage, clustering with the recent enzootic sub-clade 2, showing the A226V mutation. The RoC 2019 CHIKV strain has two novel mutations, E2-T126M and E2-H351N. Phylogenetic suggests a common origin from 2016 Angola strain, from which it diverged around 1989 (95% HPD 1985–1994). The infectious bite pattern was similar for 2017, 2018 and early 2019. One Ae. albopictus pool was RT-PCR positive. The 2019 RoC CHIKV strain seems to be recently introduced or be endemic in sylvatic cycle. Distinct from the contemporary Indian CHIKV isolates and in contrast to the original Central-African strains (transmitted by Ae. aegypti), it carries the A226V mutation, indicating an independent adaptive mutation in response to vector replacement (Ae. albopictus vs Ae. aegypti)

    Tracking the international spread of SARS-CoV-2 lineages B.1.1.7 and B.1.351/501Y-V2

    Get PDF
    Publisher Copyright: © 2021 O'Toole Á et al.Late in 2020, two genetically-distinct clusters of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with mutations of biological concern were reported, one in the United Kingdom and one in South Africa. Using a combination of data from routine surveillance, genomic sequencing and international travel we track the international dispersal of lineages B.1.1.7 and B.1.351 (variant 501Y-V2). We account for potential biases in genomic surveillance efforts by including passenger volumes from location of where the lineage was first reported, London and South Africa respectively. Using the software tool grinch (global report investigating novel coronavirus haplotypes), we track the international spread of lineages of concern with automated daily reports, Further, we have built a custom tracking website (cov-lineages.org/global_report.html) which hosts this daily report and will continue to include novel SARS-CoV-2 lineages of concern as they are detected.Peer reviewe

    SARS-CoV-2 Variants Identification: Overview of Molecular Existing Methods

    No full text
    Since the beginning of COVID-19 pandemic the Real Time sharing of genome sequences of circulating virus supported the diagnostics and surveillance of SARS-CoV-2 and its transmission dynamics. SARS-CoV-2 straightaway showed its tendency to mutate and adapt to the host, culminating in the emergence of variants; so it immediately became of crucial importance to be able to detect them quickly but also to be able to monitor in depth the changes on the whole genome to early identify the new possibly emerging variants. In this scenario, this manuscript aims to provide an overview of the existing methods for the identification of SARS-CoV-2 variants (from rapid method based on identification of one or more specific mutations to Whole Genome sequencing approach-WGS), taking into account limitations, advantages and applications of them in the field of diagnosis and surveillance of SARS-CoV-2

    Detection of SARS-CoV-2 Variants via Different Diagnostics Assays Based on Single-Nucleotide Polymorphism Analysis

    No full text
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is characterized by fast evolution with the appearance of several variants. Next-Generation Sequencing (NGS) technology is considered the gold standard for monitoring known and new SARS-CoV-2 variants. However, the complexity of this technology renders this approach impracticable in laboratories located in areas with limited resources. We analyzed the capability of the ThermoFisher TaqPath COVID-19 RT-PCR (TaqPath) and the Seegene Novaplex SARS-CoV-2 Variant assay (Novaplex) to detect Omicron variants; the Allplex VariantII (Allplex) was also evaluated for Delta variants. Sanger sequencing (SaS) was the reference method. The results obtained with n = 355 nasopharyngeal samples were: negative with TaqPath, although positive with other qualitative molecular assays (n = 35); undetermined (n = 40) with both the assays; negative for the ∆69/70 mutation and confirmed as the Delta variant via SaS (n = 100); positive for ∆69/70 and confirmed as Omicron BA.1 via SaS (n = 80); negative for ∆69/70 and typed as Omicron BA.2 via SaS (n = 80). Novaplex typed 27.5% of samples as undetermined with TaqPath, 11.4% of samples as negative with TaqPath, and confirmed 100% of samples were Omicron subtypes. In total, 99/100 samples were confirmed as the Delta variant with Allplex with a positive per cent agreement (PPA) of 98% compared to SaS. As undermined samples with Novaplex showed RdRp median Ct values (Ct = 35.4) statistically higher than those of typed samples (median Ct value = 22.0; p < 0.0001, Mann–Whitney test), the inability to establish SARS-CoV-2 variants was probably linked to the low viral load. No amplification was obtained with SaS among all 35 negative TaqPath samples. Overall, 20% of samples which were typed as negative or undetermined with TaqPath, and among them, twelve were not typed even by SaS, but they were instead correctly identified with Novaplex. Although full-genome sequencing remains the elected method to characterize new strains, our data show the high ability of a SNP-based assay to identify VOCs, also resolving samples typed as undetermined with TaqPath

    Compartmentalized Replication of SARS-Cov-2 in Upper vs. Lower Respiratory Tract Assessed by Whole Genome Quasispecies Analysis

    No full text
    We report whole-genome and intra-host variability of SARS-Cov-2 assessed by next generation sequencing (NGS) in upper (URT) and lower respiratory tract (LRT) from COVID-19 patients. The aim was to identify possible tissue-specific patterns and signatures of variant selection for each respiratory compartment. Six patients, admitted to the Intensive Care Unit, were included in the study. Thirteen URT and LRT were analyzed by NGS amplicon-based approach on Ion Torrent Platform. Bioinformatic analysis was performed using both realized in-house and supplied by ThermoFisher programs. Phylogenesis showed clade V clustering of the first patients diagnosed in Italy, and clade G for later strains. The presence of quasispecies was observed, with variants uniformly distributed along the genome and frequency of minority variants spanning from 1% to ~30%. For each patient, the patterns of variants in URT and LRT were profoundly different, indicating compartmentalized virus replication. No clear variant signature and no significant difference in nucleotide diversity between LRT and URT were observed. SARS-CoV-2 presents genetic heterogeneity and quasispecies compartmentalization in URT and LRT. Intra-patient diversity was low. The pattern of minority variants was highly heterogeneous and no specific district signature could be identified, nevertheless, analysis of samples, longitudinally collected in patients, supported quasispecies evolution

    Genomic and Epidemiologic Surveillance of SARS-CoV-2 in the Pandemic Period: Sequencing Network of the Lazio Region, Italy

    No full text
    Since the beginning of the COVID-19 pandemic, large-scale genomic sequencing has immediately pointed out that SARS-CoV-2 has rapidly mutated during the course of the pandemic, resulting in the emergence of variants with a public health impact. In this context, strictly monitoring the circulating strains via NGS has proven to be crucial for the early identification of new emerging variants and the study of the genomic evolution and transmission of SARS-CoV-2. Following national and international guidelines, the Lazio region has created a sequencing laboratory network (WGSnet-Lazio) that works in synergy with the reference center for epidemiological surveillance (SERESMI) to monitor the circulation of SARS-CoV-2. Sequencing was carried out with the aims of characterizing outbreak transmission dynamics, performing the genomic analysis of viruses infecting specific categories of patients (i.e., immune-depressed, travelers, and people with severe symptoms) and randomly monitoring variant circulation. Here we report data emerging from sequencing activities carried out by WGSnet-Lazio (from February 2020 to October 2022) linked with epidemiological data to correlate the circulation of variants with the clinical and demographic characteristics of patients. The model of the sequencing network developed in the Lazio region proved to be a useful tool for SARS-CoV-2 surveillance and to support public health measures for epidemic containment

    16S rRNA gene sequencing of rectal swab in patients affected by COVID-19.

    No full text
    COronaVIrus Disease-2019 (COVID-19) is a pandemic respiratory infection caused by a new betacoronavirus, the Severe Acute Respiratory Syndrome-CoronaVirus-2 (SARS-CoV-2). Few data are reported on the gut microbiota in COVID-19 patients. 16S rRNA gene sequencing was performed to reveal an altered composition of the gut microbiota in patients with COVID-19 pneumonia admitted in intensive care unit (ICU) (i-COVID19), or in infectious disease wards (w-COVID19) as compared to controls (CTRL). i-COVID19 patients showed a decrease of Chao1 index as compared to CTRL and w-COVID19 patients indicating that patients in ICU displayed a lower microbial richness while no change was observed as for Shannon Index. At the phylum level, an increase of Proteobacteria was detected in w-COVID19 patients as compared to CTRL. A decrease of Fusobacteria and Spirochetes has been found, with the latter decreased in i-COVID19 patients as compared to CTRL. Significant changes in gut microbial communities in patients with COVID-19 pneumonia with different disease severity compared to CTRL have been identified. Our preliminary data may provide valuable information and promising biomarkers for the diagnosis of the disease and, when validated in larger cohort, it could facilitate the stratification of patients based on the microbial signature

    Multi-omics approach to COVID-19: a domain-based literature review

    No full text
    Background: Omics data, driven by rapid advances in laboratory techniques, have been generated very quickly during the COVID-19 pandemic. Our aim is to use omics data to highlight the involvement of specific pathways, as well as that of cell types and organs, in the pathophysiology of COVID-19, and to highlight their links with clinical phenotypes of SARS-CoV-2 infection. Methods: The analysis was based on the domain model, where for domain it is intended a conceptual repository, useful to summarize multiple biological pathways involved at different levels. The relevant domains considered in the analysis were: virus, pathways and phenotypes. An interdisciplinary expert working group was defined for each domain, to carry out an independent literature scoping review. Results: The analysis revealed that dysregulated pathways of innate immune responses, (i.e., complement activation, inflammatory responses, neutrophil activation and degranulation, platelet degranulation) can affect COVID-19 progression and outcomes. These results are consistent with several clinical studies. Conclusions: Multi-omics approach may help to further investigate unknown aspects of the disease. However, the disease mechanisms are too complex to be explained by a single molecular signature and it is necessary to consider an integrated approach to identify hallmarks of severity
    corecore