893 research outputs found
Coulomb Drag in Coherent Mesoscopic Systems
We present a theory for Coulomb drag between two mesoscopic systems. Our
formalism expresses the drag in terms of scattering matrices and wave
functions, and its range of validity covers both ballistic and disordered
systems. The consequences can be worked out either by analytic means, such as
the random matrix theory, or by numerical simulations. We show that Coulomb
drag is sensitive to localized states, which usual transport measurements do
not probe. For chaotic 2D-systems we find a vanishing average drag, with a
nonzero variance. Disordered 1D-wires show a finite drag, with a large
variance, giving rise to a possible sign change of the induced current.Comment: 4 pages including 2 figures. Minor changes. Accepted for publication
in Phys. Rev. Let
Model of C-Axis Resistivity of High-\Tc Cuprates
We propose a simple model which accounts for the major features and
systematics of experiments on the -axis resistivity, , for \lsco,
\ybco and \bsco . We argue that the -axis resistivity can be separated
into contributions from in-plane dephasing and the -axis ``barrier''
scattering processes, with the low temperature semiconductor-like behavior of
arising from the suppression of the in-plane density of states
measured by in-plane magnetic Knight shift experiments. We report on
predictions for in impurity-doped \ybco materials.Comment: 10 pages + figures, also see March Meeting J13.1
Frictional drag between quantum wells mediated by phonon exchange
We use the Kubo formalism to evaluate the contribution of acoustic phonon
exchange to the frictional drag between nearby two-dimensional electron
systems. In the case of free phonons, we find a divergent drag rate
(). However, becomes finite when phonon
scattering from either lattice imperfections or electronic excitations is
accounted for. In the case of GaAs quantum wells, we find that for a phonon
mean free path smaller than a critical value, imperfection
scattering dominates and the drag rate varies as over many
orders of magnitude of the layer separation . When exceeds the
critical value, the drag rate is dominated by coupling through an
electron-phonon collective mode localized in the vicinity of the electron
layers. We argue that the coupled electron-phonon mode may be observable for
realistic parameters. Our theory is in good agreement with experimental results
for the temperature, density, and -dependence of the drag rate.Comment: 45 pages, LaTeX, 8 postscript file figure
Magnetotunneling spectroscopy of mesoscopic correlations in two-dimensional electron systems
An approach to experimentally exploring electronic correlation functions in
mesoscopic regimes is proposed. The idea is to monitor the mesoscopic
fluctuations of a tunneling current flowing between the two layers of a
semiconductor double-quantum-well structure. From the dependence of these
fluctuations on external parameters, such as in-plane or perpendicular magnetic
fields, external bias voltages, etc., the temporal and spatial dependence of
various prominent correlation functions of mesoscopic physics can be
determined. Due to the absence of spatially localized external probes, the
method provides a way to explore the interplay of interaction and localization
effects in two-dimensional systems within a relatively unperturbed environment.
We describe the theoretical background of the approach and quantitatively
discuss the behavior of the current fluctuations in diffusive and ergodic
regimes. The influence of both various interaction mechanisms and localization
effects on the current is discussed. Finally a proposal is made on how, at
least in principle, the method may be used to experimentally determine the
relevant critical exponents of localization-delocalization transitions.Comment: 15 pages, 3 figures include
Magneto-Coulomb drag: interplay of electron--electron interactions and Landau quantization
We use the Kubo formalism to calculate the transresistivity for
carriers in coupled quantum wells in a large perpendicular magnetic field .
We find that is enhanced by approximately 50--100 times over that
of the B=0 case in the interplateau regions of the integer quantum Hall effect.
The presence of both electron--electron interactions and Landau quantization
results in (i) a twin-peaked structure of in the inter-plateau
regions at low temperatures, and, (ii) for the chemical potential at the center
of a Landau level band, a peaked temperature dependence of .Comment: 4 pages, RevTeX, 4 PS figures in text using eps
Structure and Stability of an Amorphous Metal
Using molecular dynamics simulations, with a realistic many-body
embedded-atom potential, and a novel method to characterize local order, we
study the structure of pure nickel during the rapid quench of the liquid and in
the resulting glass. In contrast with previous simulations with pair
potentials, we find more crystalline order and fewer icosahedra for slower
quenching rates, resulting in a glass less stable against crystallization. It
is shown that there is not a specific amorphous structure, only the arrest of
the transition from liquid to crystal, resulting in small crystalline clusters
immersed in an amorphous matrix with the same structure of the liquid.Comment: 4 pages, 4 ps figs., to appear in Phys. Rev. Let
Length versus radius relationship for ZnO nanowires grown via vapour phase transport
We model the growth of ZnO nanowires via vapour phase transport and examine the relationship predicted between the nanowire length and radius. The model predicts that the
lengths of the nanowires increase with decreasing nanowire radii. This prediction is in very good agreement with experimental data from a variety of nanowire samples, including samples showing a broad range of nanowire radii and samples grown using a lithographic technique to constrain the nanowire radius. The close agreement of the model and the experimental data strongly support supporting the inclusion of a surface diffusion term in the model for the incorporation of species into a growing nanowire
Highlights from the Pierre Auger Observatory
The Pierre Auger Observatory is the world's largest cosmic ray observatory.
Our current exposure reaches nearly 40,000 km str and provides us with an
unprecedented quality data set. The performance and stability of the detectors
and their enhancements are described. Data analyses have led to a number of
major breakthroughs. Among these we discuss the energy spectrum and the
searches for large-scale anisotropies. We present analyses of our X
data and show how it can be interpreted in terms of mass composition. We also
describe some new analyses that extract mass sensitive parameters from the 100%
duty cycle SD data. A coherent interpretation of all these recent results opens
new directions. The consequences regarding the cosmic ray composition and the
properties of UHECR sources are briefly discussed.Comment: 9 pages, 12 figures, talk given at the 33rd International Cosmic Ray
Conference, Rio de Janeiro 201
- âŠ