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We use the Kubo formalism to calculate the transresistivityr21 for carriers in coupled quantum wells
in a large perpendicular magnetic fieldB. We find thatr21 is enhanced by approximately 50–100 times
over that of theB ­ 0 case in the interplateau regions of the integer quantum Hall effect. The presence
of both electron-electron interactions and Landau quantization results in (i) a twin-peaked structure of
r21sBd in the interplateau regions at low temperatures and (ii) for the chemical potential at the center of
a Landau level band, a peaked temperature dependence ofr21sTdyT 2. [S0031-9007(96)00875-7]

PACS numbers: 73.50.Dn, 73.20.Mf

The combination of electron-electron (e-e) Coulomb in-
teraction and strong magnetic (B) field in two-dimensional
electron gases (2DEGs) has provided an exciting venue of
research for both experimentalists and theorists over the
past few decades [1]. One well-known example of this
is the fractional quantum Hall effect, where the physics
is determined by the subtle interplay between the interac-
tions and the large density of states (DOS) caused by all
the electrons being confined to the lowest Landau level
(LL). Even in the integer quantum Hall effect, wheree-e
interactions do not play such a crucial role, they are thought
to determine some important factors such as the position of
the edge currents [2]. On the other hand,e-e interactions in
parabolic confined systems in a magnetic field surprisingly
haveno effect on cyclotron resonance measurements (due
to the generalized Kohn’s theorem) [3]. Thus phenomena
involving interelectron interactions in aB field often pro-
duce surprising and interesting results.

Recently there have been many experiments on coupled
2DEGs electron systems which have probed the effect of
Coulomb interactions, both with and without magnetic
field. Some experiments measured tunneling from one
well to the other [4], while in others the quantum wells
were separated by a distance at which interwell tunneling
was negligible but interwell Coulomb interactions were
experimentally detectable [5]. The latter “drag” experi-
ments, so called because one drives a current in one layer
and measures the consequence of the frictional drag due
to the interlayer interactions in the second layer, provide
a direct measure of the interwell Coulomb interaction.
Not surprisingly, physics centered around drag phenom-
ena has generated many theoretical investigations [6–12].
In principle, drag experiments should provide a unique
forum for exploring the subtleties of the interplay ofe-e
interactions in a magnetic field. Thus far, however, only
zero magnetic field data have been published.

In this Letter, we present a first-principles formulation
of the drag problem in a magnetic field, including effects
due to weak impurity scattering, starting from Kubo theory.
We then show results of an explicit numerical calculation

of the transresistivityrxx
21 for short-ranged scatterers in the

interplateau regions of the integer quantum Hall regime.
We demonstrate that the aforementioned large DOS and
screening due to intralayere-e interactions have profound
effects onr21.

In principle, a drag experiment can be performed by
imposing a fixed electric fieldE1 on the “drive” layer
(henceforth called layer 1) and measuring the current
J2 dragged along in the “response” layer (called layer
2), placed a distanced away. The Kubo formalism al-
lows one to compute the transconductivitys

$
ijEj ­ Ji

(i ­ 1, 2), which we can invert to obtain the transre-
sistivity r

$
ijJj ­ Ei [13]. For time-independent trans-

port, to second (i.e., lowest nonvanishing) order in the
screened interlayer interactionW12sq, vd, s

$
21 is given by

[10,11,14]

s
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1 s2q, 2q; 2v 2 i01, 2v 1 i01d , (1)

wherenB is the Bose function andDl is the imaginary-
time Fourier transform of the thermal-averaged corre-
lation function ikTt jlsq ­ 0, t ­ 0drlsq, tdrls2q, t0dl
[10,11]. Screening is calculated using the random phase
approximation for electrons in a magnetic field with weak
impurity scattering [15], where the density-response func-
tion xsq, vd is given diagrammatically by Fig. 1(a). We
assume throughout this paper that there are like charges
in both layers (generalization to unlike charges is straight-
forward), and that spin splitting is negligible [16].

We let x-y be the confinement plane for the elec-
tronsB ­ Bẑ, and use the Landau gaugeA ­ s0, Bx, 0d.
Dsq, q; v 6 i01, v 7 i01d is a real, gauge invariant
quantity. Ignoring diagrams with crossed impurity lines
(which are negligible in the weak scattering and highB-
field limit), D is shown diagrammatically in Fig. 1(b) and
can be written down in terms of the single-particle Green
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FIG. 1. (a) The diagram corresponding to the density response
function x. (b) The triangle diagram contribution to the three-
body response functionD. The G and g are the charge and
current vertices, respectively, and the labelsM and N denote
the LL’s of the impurity-broadened Green functions.

functionsG, and charge and current vertices. For 2DEGs
electrons in a quantizing magnetic field it is crucial to in-
clude the impurity effects from the outset to avoid non-
physical results. We do this within the self-consistent
Born approximation (SCBA) [15]. Then the Green func-
tions and the self-energyS depend only on the LL in-
dex [15], GsN , ivnd ­ fivn 2 ´N 2 SsN , ivndg21. In
calculatingD, we include all ladder-type diagrams as re-
quired by the Ward identity.

The general expression forD for arbitrary scattering
is complicated, but many simplifications occur in the
weak-scattering limitvct ¿ 1, where vc ­ eBym is
the cyclotron frequency andt is the Born approximation
scattering time. In particular, it is possible to linkD with
thexsq, vd shown in Fig. 1(a) [17]. We find

Dsq, q; v 6 i01, v 7 i01d ­

6 2h̄2e21q 3 B
Imfxsq, vdg

B2 1 Ossssvctd21ddd . (2)

It is worth emphasizing that forvct ¿ 1, the relation-
ship betweenD and Imfxg holds for arbitrary impurity
scattering potentialUsqd, whereasDsB ­ 0d is related to
Imfxg only for q-independentU [11,12,18].

A brief discussion of the6 sign occurring in the
high field limit of Eq. (2) is appropriate. The Onsager
relation and the vector nature ofD imply that it must
have the form [19] Dsq, q; v 6 i01, v 7 i01, Bd ­
q usq, B, vd 6 sq 3 Bd ysq, B, vd. The q u term domi-
nates for smallB, while the sq 3 Bd y term domi-
nates for vct ¿ 1, which is consistent with Eq. (2).
The form of D implies from Eq. (1) that asB is
increased from0, s

xx
21 changes sign at some point.

Does this mean a change in sign of an experimen-
tally measured quantity? If the measured quantity is
the transresistivityr

xx
21 , as is usually the case [5], the

answer is no, for the following reason. In terms of
s
$

ij , r
$

21 ­ f2s
$

11s
$21

21 s
$

22 1 s
$

12g21 ø 2s
$21

22 s
$

21s
$21

11
(since js

$
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$
21j). For B ­ 0, s

$
ii are diagonal and

r
xx
21 sB ­ 0d ­ 2s

xx
21 yssxx

11 s
xx
22 d; i.e., r

xx
21 and s

xx
21 have

oppositesigns. In contrast, for quantum Hall systems,

js
xy
ii j ¿ s

xx
ii and hencerxx

21 svct ¿ 1d ø 2s
yy
21 ys

xy
11 s

yx
22 .

Since s
xy
11 s

yx
22 , 0, this implies thatsxx

21 svct ¿ 1d and
r

xx
21 svct ¿ 1d have the same sign. Therefore, even

thoughs
xx
21 changes sign asB increases, the experimen-

tally relevant quantityrxx
21 is negative in both cases. A

physical explanation of this result is illustrated in Fig. 2.
Equations (1) and (2) form the basis of our numerical

calculations. We obtainxsq, vd by solving the appropri-
ate vertex equation, and perform the integrals in (1) to
obtains

$
21 and consequentlyr

$
21. We discuss the techni-

cal details elsewhere [19] and focus here on the qualitative
features and some of the numerical results.

Without impurities, all electrons in a particular LL
are degenerate. When the scattering is weak (so that
inter-LL coupling can be ignored) within the SCBA with
short-ranged scatterers [i.e., scattering interaction range
ø ,By

p
2N 1 1, where,B ­ sh̄yeBd1y2] SsN , ivnd is N

independent, and the electrons in a LL are distributed in
bands where the DOS is semielliptical [15]. The DOS
at the center of the LL is approximately

p
2vctp21 g0,

whereg0 ­ mp21h̄22 is the two-dimensional zero mag-
netic field DOS. Thus whenvct ¿ 1 (achieved in clean
GaAs samples at fields under a tesla) the DOS is greatly en-
hanced over theB ­ 0 value. The low-temperature tran-
sresistivity for fixedT is to a first approximation directly
proportional to the product of the thermally averaged DOS
of both layers,g1sBd g2sBd, around the chemical potential
m (since the more phase space there is available for scatter-
ing around the Fermi surface, the larger the probability for
interlayer momentum transfer). Hence one might expect
that (1)jrxx

21 svct ¿ 1dj ¿ jr
xx
21 sB ­ 0dj, and (2)rxx

21 sBd
would more or less simply reflect the shape ofg1sBd g2sBd.

FIG. 2. Schematic illustration of the sign of the diagonal
elements of thes

$

21 andr
$

21 at (a)B ­ 0 and (b) strongB field
(charges assumed positive).Ii are the currents,Ei are electric
fields, andF is the average net force transmitted from layer 1
to 2. For a transresistivity (transconductivity) measurement,
I2 ­ 0 sE2 ­ 0d andE2 sI2d is measured. Whilesaa

21 changes
sign going from (a) to (b),raa

21 does not. For transresistivity
measurements,E2 k F becauseF 2 esE2 1 kv2l 3 Bd ­ 0,
andkv2l ­ 0. Hence, under conditions whereI1 k F, which is
the case when there is inversion symmetry (e.g., whenB ­ 0),
or when the electron distribution is a drifted Fermi-Dirac (e.g.,
whenvct ¿ 1), there is no Hall transresistivity.
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Figure 3 shows the results of a calculation forr
xx
21 sBd

for two identical layers at fixed densities. For compari-
son, we also showjRefxsq ! 0, v ­ 0dgj ­ ≠ny≠m ;
g [20]. As expected,rxx

21 is very large; approximately
50–100 times larger than atB ­ 0 [21]. Also r21 is
largest whenm is in the bands of extended states, and sup-
pressed when it is in between the extended bands [9,22].
However, the shape ofr21sBd is markedly different from
g2sBd. Relative to g2sBd, there is an enhancement in
r21sBd at the edges of the broadened LL and suppression
at the center.

This effect originates from the screening properties of
the system. Recall thatr21 also depends on interlayer
coupling, which is given by the screened interlayer inter-
actionW12. Roughly,r21 is proportional tog1 g2jW12j

2.
For 2DEGs, the range of the screened interaction varies
inversely withg [15]. Therefore, increasinggsBd weak-
ens the interlayer coupling, implying that the termsg1 g2
andjW12j

2 tend to work in opposition. This results in the
following scenario whenB is changed. Whenm lies in
the region of localized states below a LL band,r21 is very
small because very few electrons have sufficient energy to
be excited into extended states where they contribute to
the drag [23]. AsB is increased so thatm moves into the
LL band, the density of extended states increases, while
the interlayer interaction is strong due to weak screening,
resulting in a sharp rise inr21. However, as theB field is
further increased so thatm moves closer towards the cen-
ter of the LL and the DOS further increases, the screening
becomes so effective that it more than compensates for
the increase in DOS, leading to a reduction inr21. This
competition of DOS and screening produces the unique
shape ofr21sBd.

We also find interesting behavior inr21 when B is
kept constant and the temperatureT is changed. We
concentrate on theT dependence form in the middle of a

FIG. 3. Transresistivityr21 (solid lines) and the thermally
averaged DOSg ­ ≠ny≠m (dashed, in arbitrary units) for
(a) T ­ 0.6 K and (b) T ­ 1.5 K as a function of mag-
netic field in GaAs for densityn ­ 1.5 3 1011 cm22 sTF ­
EFykB ø 60 Kd, well separationd ­ 350 Å, zero well widths,
and h̄t21 ­ 0.01EF . N is the LL index, andh̄vc ­ eF cor-
responds toB ­ 3.1 T. While thegsBd peaks in the middle of
the Landau level, the interlayer coupling is weakest there (due
to large screening), pushing the peaks inr21 towards the edges
of the Landau level bands.

LL band. If the DOS were constant and the interaction
were v independent, the scaled transresistivityr21yT2

would beT independent [7]. Figure 4, however, shows
that r21yT2 has two prominent features: (1) a logsT d
behavior forT ø t21 ­ 0.01EF (see inset), and (2) an
enhancement due to dynamic screening effects.

The logarithmic behavior ofr21yT 2, which is a direct
consequence of the diffusive nature of the system [8],
can be seen at experimentally feasible temperatures (T ,
0.6 K, see inset of Fig. 4) at highB fields, in sharp
contrast to theB ­ 0 case, where it manifests itself
only at unattainably low temperatures (for high-mobility
samples Ref. [8] findsT , 102100 K). This difference
can be traced to the different length scales over which
diffusive behavior occurs. AtB ­ 0, the minimum length
scale for diffusive behavior to be seen is the elastic
mean free pathlel ­ yFt, whereas at highB fields this
length scale is,B, since diffusion occurs by hopping
from adjacent orbitals which are,B apart. This implies
that the diffusive form of the polarizabilityxdiffsq, vd ,
2Dq2ysDq2 2 ivd is valid for q & l21

el for B ­ 0 and
q & ,21

B for large B. Since lel ¿ ,B at largeB, it is
much easier to pick up the diffusive behavior at high
magnetic fields. The second feature noted is a dynamic
screening induced enhancement inr21yT2, reminiscent of
an effect occurring atB ­ 0 [12]. As the temperature is
raised, inelastic interlayer momentum transfer processes
become increasingly important. These processes are
screened dynamically, and as this is less effective than
static screening, the effective interlayer interaction is
increased leading to an enhancedr21yT2.

Summarizing, we have presented a microscopic calcu-
lation of transresistivity for Coulomb coupled quantum
wells in strong magnetic fields. Both magnetic field and
temperature dependence of the transresistivity are clearly
distinct from normal longitudinal magnetoresistivity; the

FIG. 4. Transresistivity as a function of temperature, forB ­
2.1 T (equivalent to a half filledN ­ 1 LL), using dynamical
screening (solid line) and, for comparison, static screening [i.e.,
usingW12sq, v ­ 0d, dashed line]. Other parameters are as in
Fig. 3. The upturn and maximum in the solid curve is caused
by the decrease in the screening efficiency of the electron gas at
finite frequencies. Inset: Closeup of dynamical screening curve
for 1026 , TyTF , 1022, showingr21yT 2 , 2 logsT d.
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differences arise from an intricate interplay between Lan-
dau quantization, interparticle interaction, and diffusion
effects.
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