730 research outputs found

    Cascades of multisite phosphorylation control Sic1 destruction at the onset of S phase.

    Get PDF
    Multisite phosphorylation of proteins has been proposed to transform a graded protein kinase signal into an ultrasensitive switch-like response. Although many multiphosphorylated targets have been identified, the dynamics and sequence of individual phosphorylation events within the multisite phosphorylation process have never been thoroughly studied. In Saccharomyces cerevisiae, the initiation of S phase is thought to be governed by complexes of Cdk1 and Cln cyclins that phosphorylate six or more sites on the Clb5-Cdk1 inhibitor Sic1, directing it to SCF-mediated destruction. The resulting Sic1-free Clb5-Cdk1 complex triggers S phase. Here, we demonstrate that Sic1 destruction depends on a more complex process in which both Cln2-Cdk1 and Clb5-Cdk1 act in processive multiphosphorylation cascades leading to the phosphorylation of a small number of specific phosphodegrons. The routes of these phosphorylation cascades are shaped by precisely oriented docking interactions mediated by cyclin-specific docking motifs in Sic1 and by Cks1, the phospho-adaptor subunit of Cdk1. Our results indicate that Clb5-Cdk1-dependent phosphorylation generates positive feedback that is required for switch-like Sic1 destruction. Our evidence for a docking network within clusters of phosphorylation sites uncovers a new level of complexity in Cdk1-dependent regulation of cell cycle transitions, and has general implications for the regulation of cellular processes by multisite phosphorylation

    Adipose Tissue-Derived Stromal Cells Alter the Mechanical Stability and Viscoelastic Properties of Gelatine Methacryloyl Hydrogels

    Get PDF
    The extracellular matrix provides mechanical cues to cells within it, not just in terms of stiffness (elasticity) but also time-dependent responses to deformation (viscoelasticity). In this work, we determined the viscoelastic transformation of gelatine methacryloyl (GelMA) hydrogels caused by adipose tissue-derived stromal cells (ASCs) through mathematical modelling. GelMA-ASCs combination is of interest to model stem cell-driven repair and to understand cell-biomaterial interactions in 3D environments. Immortalised human ASCs were embedded in 5%, 10%, and 15% (w/v) GelMA hydrogels and evaluated for 14 d. GelMA had a concentration-dependent increase in stiffness, but cells decreased this stiffness over time, across concentrations. Viscoelastic changes in terms of stress relaxation increased progressively in 5% GelMA, while mathematical Maxwell analysis showed that the relative importance (R(i)) of the fastest Maxwell elements increased proportionally. The 10% GelMA only showed differences at 7 d. In contrast, ASCs in 15% GelMA caused slower stress relaxation, increasing the R(i) of the slowest Maxwell element. We conclude that GelMA concentration influenced the stiffness and number of Maxwell elements. ASCs changed the percentage stress relaxation and R(i) of Maxwell elements transforming hydrogel viscoelasticity into a more fluid environment over time. Overall, 5% GelMA induced the most favourable ASC response

    Genetic and environmental contributions to stability in loneliness throughout childhood.

    Get PDF
    Heritability estimates based on two small cross-sectional studies in children indicate that the genetic contribution to individual differences in loneliness is approximately 50%. A recent study estimated the genetic contribution to variation in loneliness in adults to be 48%. The current study aims to replicate and expand these findings by conducting longitudinal analyses in order to study causes of individual differences in stability of loneliness throughout childhood. Univariate and multivariate longitudinal analyses are conducted in a large sample of young Dutch twins. Information on loneliness comes from maternal ratings on the Child Behavior Checklist. Using an average score of loneliness over ages 7, 10, and 12, results from the two previous studies are replicated and a heritability estimate of 45% is found. The remaining variance is accounted for by shared environmental influences (12%), and non-shared environmental influences (43%). The long-itudinal analyses, however, show that heritability is 58% at age 7, 56% at age 10, but drops to 26% at age 12. A parallel increase in influences of shared family environment is observed, explaining 6% of the variance at age 7, 8% at age 10 and 35% at age 12. The remaining variance is explained by relatively stable influences of nonshared environmental factors. Stability in loneliness is high, with phenotypic correlations in the range of 0.51-0.69. This phenotypic stability is mainly caused by genetic and nonshared environmental influences. The results indicate the importance of both innate as well as nonshared environmental factors for individual differences in loneliness. Further, different results between causes of individual differences for the average score of loneliness and results for age 12 from the longitudinal analyses, indicate the importance of longitudinal analyses with data at well-defined ages. © 2007 Wiley-Liss, Inc

    EP-1179: What the gamma? The correlation between QA and clinical risk estimates for prostate RapidArc plans

    Get PDF
    Influenza virus infection can be accompanied by life-threatening immune pathology most likely due to excessive antiviral responses. Inhibitory immune receptors may restrain such overactive immune responses. To study the role of the inhibitory immune receptor CD200R and its ligand CD200 during influenza infection, we challenged wild-type and CD200(-/-) mice with influenza virus. We found that CD200(-/-) mice in comparison to wild-type controls when inoculated with influenza virus developed more severe disease, associated with increased lung infiltration and lung endothelium damage. CD200(-/-) mice did develop adequate adaptive immune responses and were able to control viral load, suggesting that the severe disease was caused by a lack of control of the immune response. Interestingly, development of disease was completely prevented by depletion of T cells before infection, despite dramatically increased viral load, indicating that T cells are essential for the development of disease symptoms. Our data show that lack of CD200-CD200R signaling increases immune pathology during influenza infection, which can be reduced by T cell depletion. The Journal of Immunology, 2009, 183: 1990-1996

    Polycomb Group Genes: Keeping Stem Cell Activity in Balance

    Get PDF
    Overexpression of Polycomb group genes is often associated with cancer development, whereas complete deletion results in loss of stem cell activity. New studies show that partial loss of function of Polycomb group genes enhances the activity of blood stem/progenitor cells

    β-catenin tyrosine 654 phosphorylation increases Wnt signalling and intestinal tumorigenesis

    Get PDF
    Objective: Deregulation of the Wnt signalling pathway by mutations in the Apc or β-catenin genes underlies colorectal carcinogenesis. As a result, β-catenin stabilises, translocates t

    Predictors of Limb Fat Gain in HIV Positive Patients Following a Change to Tenofovir-Emtricitabine or Abacavir-Lamivudine

    Get PDF
    Background Antiretroviral treatment (cART) in HIV causes lipoatrophy. We examined predictors of anthropometric outcomes over 96 weeks in HIV-infected, lipoatrophic adults receiving stable cART randomised to tenofovir-emtricitabine (TDF-FTC) or abacavir-lamivudine (ABC-3TC) fixed dose combinations. Methodology/Principal Findings The STEAL study was a prospective trial of virologically suppressed participants randomised to either TDF-FTC (n = 178) or ABC-3TC (n = 179). Anthropometric assessment was conducted at baseline, weeks 48 and 96. The analysis population included those with baseline and week 96 data remaining on randomised therapy. Distribution of limb fat change was divided into four categories (≤0%, \u3e0-10%, \u3e10-20%, \u3e20%). Baseline characteristics [demographics, medical history, metabolic and cardiovascular biomarkers] were assessed as potential predictors of change in percent subcutaneous limb fat using linear regression. 303 participants (85% of STEAL population) were included. Baseline characteristics were: mean (±SD) age 45 (±8) years; thymidine analogue nucleoside reverse transcriptase inhibitor (tNRTI) duration 4 (±3) years; limb fat 5.4 (±3.0)kg; body mass index 24.7 (±3.5) kg/m2. Mean (SD) limb fat gain to week 48 and 96 was 7.6% (±22.4) and 13.2% (±27.3), respectively, with no significant difference between groups. 51.5% of all participants had \u3e10% gain in limb fat. Predictors of greater limb fat gain at week 96 were baseline tNRTI (10.3, p = 0.001), glucose \u3e6 mmol/L (16.1, p = 0.04), higher interleukin 6 (IL-6) (2.8, p = 0.004) and lower baseline limb fat (3.8-6.4 kg - 11.2; \u3e6.4 kg - 15.7, p trend\u3c0.001). Conclusions/Significance Modest peripheral fat gain occurred with both TDF-FTC and ABC-3TC. Baseline factors associated with more severe lipodystrophy (lipoatrophy, baseline tNRTI, raised IL6, and glucose) predicted greater limb fat recovery at 96 weeks
    corecore