11 research outputs found

    Patients with severe COVID-19 do not have elevated autoantibodies against common diagnostic autoantigens

    Get PDF
    Infection by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the causative pathogen of coronavirus disease 2019 (COVID-19) presents occasionally with an aberrant autoinflammatory response, including the presence of elevated circulating autoantibodies in some individuals. Whether the development of autoantibodies against self-antigens affects COVID-19 outcomes remains unclear. To better understand the prognostic role of autoantibodies in COVID-19, we quantified autoantibodies against 23 markers that are used for diagnosis of autoimmune disease. To this end, we used serum samples from patients with severe [intensive care unit (ICU)] and moderate (ward) COVID-19, across two to six consecutive time points, and compared autoantibody levels to uninfected healthy and ICU controls. Acute and post-acute serum (from 1 to 26 ICU days) was collected from 18 ICU COVID-19-positive patients at three to six time points; 18 ICU COVID-19-negative patients (sampled on ICU day 1 and 3); 21 ward COVID-19-positive patients (sampled on hospital day 1 and 3); and from 59 healthy uninfected controls deriving from two cohorts. Levels of IgG autoantibodies against 23 autoantigens, commonly used for autoimmune disease diagnosis, were measured in serum samples using MSD® U-PLEX electrochemiluminescence technology (MSD division Meso Scale Discovery®), and results were compared between groups. There were no significant elevations of autoantibodies for any of the markers tested in patients with severe COVID-19. Sample collections at longer time points should be considered in future studies, for assessing the possible development of autoantibody responses following infection with SARS-CoV-2

    Viral Antigen and Inflammatory Biomarkers in Cerebrospinal Fluid in Patients With COVID-19 Infection and Neurologic Symptoms Compared With Control Participants Without Infection or Neurologic Symptoms

    Get PDF
    Importance: Neurologic symptoms are common in COVID-19, but the central nervous system (CNS) pathogenesis is unclear, and viral RNA is rarely detected in cerebrospinal fluid (CSF). / Objective: To measure viral antigen and inflammatory biomarkers in CSF in relation to neurologic symptoms and disease severity. Design, Setting, and / Participants: This cross-sectional study was performed from March 1, 2020, to June 30, 2021, in patients 18 years or older who were admitted to Sahlgrenska University Hospital, Gothenburg, Sweden, with COVID-19. All patients had CSF samples taken because of neurologic symptoms or within a study protocol. Healthy volunteer and prepandemic control groups were included. / Exposure: SARS-CoV-2 infection. / Main Outcomes and Measures: Outcomes included CSF SARS-CoV-2 nucleocapsid antigen (N-Ag) using an ultrasensitive antigen capture immunoassay platform and CSF biomarkers of immune activation (neopterin, β2-microglobulin, and cytokines) and neuronal injury (neurofilament light protein [NfL]). / Results: Forty-four patients (median [IQR] age, 57 [48-69] years; 30 [68%] male; 26 with moderate COVID-19 and 18 with severe COVID-19 based on the World Health Organization Clinical Progression Scale), 10 healthy controls (median [IQR] age, 58 [54-60] years; 5 [50%] male), and 41 patient controls (COVID negative without evidence of CNS infection) (median [IQR] age, 59 [49-70] years; 19 [46%] male) were included in the study. Twenty-one patients were neuroasymptomatic and 23 were neurosymptomatic (21 with encephalopathy). In 31 of 35 patients for whom data were available (89%), CSF N-Ag was detected; viral RNA test results were negative in all. Nucleocapsid antigen was significantly correlated with CSF neopterin (r = 0.38; P = .03) and interferon γ (r = 0.42; P = .01). No differences in CSF N-Ag concentrations were found between patient groups. Patients had markedly increased CSF neopterin, β2-microglobulin, interleukin (IL) 2, IL-6, IL-10, and tumor necrosis factor α compared with controls. Neurosymptomatic patients had significantly higher median (IQR) CSF interferon γ (86 [47-172] vs 21 [17-81] fg/mL; P = .03) and had a significantly higher inflammatory biomarker profile using principal component analysis compared with neuroasymptomatic patients (0.54; 95% CI, 0.03-1.05; P = .04). Age-adjusted median (IQR) CSF NfL concentrations were higher in patients compared with controls (960 [673-1307] vs 618 [489-786] ng/L; P = .002). No differences were seen in any CSF biomarkers in moderate compared with severe disease. / Conclusions and Relevance: In this study of Swedish adults with COVID-19 infection and neurologic symptoms, compared with control participants, viral antigen was detectable in CSF and correlated with CNS immune activation. Patients with COVID-19 had signs of neuroaxonal injury, and neurosymptomatic patients had a more marked inflammatory profile that could not be attributed to differences in COVID-19 severity. These results highlight the clinical relevance of neurologic symptoms and suggest that viral components can contribute to CNS immune responses without direct viral invasion

    A Proposal for the Mg 2+

    No full text

    Rational Design of Thermoresponsive Microgel Templates with Polydopamine Surface Coating for Microtissue Applications

    No full text
    Functional microgels provide a versatile basis for synthetic in vitro platforms as alternatives to animal experiments. The tuning of the physical, chemical, and biological properties of synthetic microgels can be achieved by blending suitable polymers and formulating them such to reflect the heterogenous and complex nature of biological tissues. Based on this premise, this paper introduces the development of volume-switchable core–shell microgels as 3D templates to enable cell growth for microtissue applications, using a systematic approach to tune the microgel properties based on a deep conceptual and practical understanding. Microscopic microgel design, such as the tailoring of the microgel size and spherical shape, is achieved by droplet-based microfluidics, while on a nanoscopic scale, a thermoresponsive polymer basis, poly(N-isopropylacrylamide) (PNIPAAm), is used to provide the microgel volume switchability. Since PNIPAAm has only limited cell-growth promoting properties, the cell adhesion on the microgel is further improved by surface modification with polydopamine, which only slightly affects the microgel properties, thereby simplifying the system. To further tune the microgel thermoresponsiveness, different amounts of N-hydroxyethylacrylamide are incorporated into the PNIPAAm network. In a final step, cell growth on the microgel surface is investigated, both at a single microgel platform and in spheroidal cell structures

    CSF neurofilament light may predict progression from amnestic mild cognitive impairment to Alzheimer's disease dementia

    No full text
    Neurofilament light (NfL) is a promising biomarker of neurodegeneration in Alzheimer's disease (AD). In this study, cerebrospinal fluid (CSF) NfL was measured in a 24-month longitudinal cohort consisting of control (n = 52), amnestic mild cognitive impairment (aMCI) (n = 55), and probable AD dementia (n = 28) individuals. The cohort was reevaluated after 6-10 years. Baseline CSF NfL was significantly elevated in aMCI and probable AD dementia groups compared to controls (p < 0.0001). CSF NfL was significantly lower in stable aMCI patients compared to aMCI patients who converted to probable AD dementia within the 24-month period (p = 0.004). Substituting T-tau for NfL in the core AD biomarkers model (Aβ42/P-tau/T-tau) did not improve ability to separate control and AD, or stable and converter aMCI patients. Our results support that elevated CSF NfL could predict progression in aMCI patients, but its utility cannot improve the core AD biomarkers

    Capsazepine, a synthetic vanilloid that converts the Na,K-ATPase to Na-ATPase

    No full text
    Capsazepine (CPZ), a synthetic capsaicin analogue, inhibits ATP hydrolysis by Na,K-ATPase in the presence but not in the absence of K+. Studies with purified membranes revealed that CPZ reduced Na+-dependent phosphorylation by interference with Na+ binding from the intracellular side of the membrane. Kinetic analyses showed that CPZ stabilized an enzyme species that constitutively occluded K+. Low-affinity ATP interaction with the enzyme was strongly reduced after CPZ treatment; in contrast, indirectly measured interaction with ADP was much increased, which suggests that composite regulatory communication with nucleotides takes place during turnover. Studies with lipid vesicles revealed that CPZ reduced ATP-dependent digitoxigenin-sensitive 22Na+ influx into K+-loaded vesicles only at saturating ATP concentrations. The drug apparently abolishes the regulatory effect of ATP on the pump. Drawing on previous homology modeling studies of Na,K-ATPase to atomic models of sarcoplasmic reticulum Ca-ATPase and on kinetic data, we propose that CPZ uncouples an Na+ cycle from an Na+/K+ cycle in the pump. The Na+ cycle possibly involves transport through the recently characterized Na+-specific site. A shift to such an uncoupled mode is believed to produce pumps mediating uncoupled Na+ efflux by modifying the transport stoichiometry of single pump units

    Dual Glucagon-like Peptide 1 (GLP-1)/Glucagon Receptor Agonists Specifically Optimized for Multidose Formulations

    No full text
    Novel peptidic dual agonists of the glucagon-like peptide 1 (GLP-1) and glucagon receptor are reported to have enhanced efficacy over pure GLP-1 receptor agonists with regard to treatment of obesity and diabetes. We describe novel exendin-4 based dual agonists designed with an activity ratio favoring the GLP-1 versus the glucagon receptor. As result of an iterative optimization procedure that included molecular modeling, structural biological studies (X-ray, NMR), peptide design and synthesis, experimental activity, and solubility profiling, a candidate molecule was identified. Novel SAR points are reported that allowed us to fine-tune the desired receptor activity ratio and increased solubility in the presence of antimicrobial preservatives, findings that can be of general applicability for any peptide discovery project. The peptide was evaluated in chronic <i>in vivo</i> studies in obese diabetic monkeys as translational model for the human situation and demonstrated favorable blood glucose and body weight lowering effects

    Intense exercise up-regulates Na(+),K(+)-ATPase isoform mRNA, but not protein expression in human skeletal muscle

    No full text
    Characterization of expression of, and consequently also the acute exercise effects on, Na(+),K(+)-ATPase isoforms in human skeletal muscle remains incomplete and was therefore investigated. Fifteen healthy subjects (eight males, seven females) performed fatiguing, knee extensor exercise at ∼40% of their maximal work output per contraction. A vastus lateralis muscle biopsy was taken at rest, fatigue and 3 and 24 h postexercise, and analysed for Na(+),K(+)-ATPase α(1), α(2), α(3), β(1), β(2) and β(3) mRNA and crude homogenate protein expression, using Real-Time RT-PCR and immunoblotting, respectively. Each individual expressed gene transcripts and protein bands for each Na(+),K(+)-ATPase isoform. Each isoform was also expressed in a primary human skeletal muscle cell culture. Intense exercise (352 ± 69 s; mean ±s.e.m.) immediately increased α(3) and β(2) mRNA by 2.4- and 1.7-fold, respectively (P < 0.05), whilst α(1) and α(2) mRNA were increased by 2.5- and 3.5-fold at 24 h and 3 h postexercise, respectively (P < 0.05). No significant change occurred for β(1) and β(3) mRNA, reflecting variable time-dependent responses. When the average postexercise value was contrasted to rest, mRNA increased for α(1), α(2), α(3), β(1), β(2) and β(3) isoforms, by 1.4-, 2.2-, 1.4-, 1.1-, 1.0- and 1.0-fold, respectively (P < 0.05). However, exercise did not alter the protein abundance of the α(1)–α(3) and β(1)–β(3) isoforms. Thus, human skeletal muscle expresses each of the Na(+),K(+)-ATPase α(1), α(2), α(3), β(1), β(2) and β(3) isoforms, evidenced at both transcription and protein levels. Whilst brief exercise increased Na(+),K(+)-ATPase isoform mRNA expression, there was no effect on isoform protein expression, suggesting that the exercise challenge was insufficient for muscle Na(+),K(+)-ATPase up-regulation
    corecore