7 research outputs found

    Hexosamine pathway activation improves memory but does not extend lifespan in mice

    No full text
    Glucosamine feeding and genetic activation of the hexosamine biosynthetic pathway (HBP) have been linked to improved protein quality control and lifespan extension. However, as an energy sensor, the HBP has been implicated in tumor progression and diabetes. Given these opposing outcomes, it is imperative to explore the long-term effects of chronic HBP activation in mammals. Thus, we asked if HBP activation affects metabolism, coordination, memory, and survival in mice. N-acetyl-D-glucosamine (GlcNAc) supplementation in the drinking water had no adverse effect on weight in males but increased weight in young females. Glucose or insulin tolerance was not affected up to 20 months of age. Of note, we observed improved memory in young male mice supplemented with GlcNAc. Survival was not changed by GlcNAc treatment. To assess the effects of genetic HBP activation, we overexpressed the pathway's key enzyme GFAT1 and a constitutively activated mutant form in all mouse tissues. We detected elevated levels of the HBP product UDP-GlcNAc in mouse brains, but did not find any effects on behavior, memory, or survival. Together, while dietary GlcNAc supplementation did not extend survival in mice, it positively affected memory and is generally well tolerated

    Sex-specific effects of Cre expression in Syn1Cre mice

    No full text
    Abstract The Cre-loxP system has been used to generate cell-type specific mutations in mice, allowing researchers to investigate the underlying biological mechanisms of disease. However, the Cre-recombinase alone can induce phenotypes that confound comparisons among genotypes if the appropriate Cre control is not included. In this study, we characterised behavioural, morphological and metabolic phenotypes of the pan-neuronal Syn1Cre line. We found that these mice possess intact neuromuscular parameters but have reduced exploratory activity and a male-specific increase in anxiety-like behaviour. Moreover, we observed a male-specific deficit in learning and long-term memory of Syn1Cre mice that could be a result of decreased visual acuity. Furthermore, we found that over-expression of human growth hormone (hGH) from Syn1Cre results in a male-specific reduction in body weight and femur length, potentially through decreased hepatic Igf1 expression. However, metabolic characteristics of Syn1Cre mice such as glucose metabolism, energy expenditure and feeding were unaffected by the presence of Syn1Cre. In conclusion, our data demonstrate that Syn1Cre expression has effects on behavioural and morphological traits. This finding highlights the importance of including the Cre control in all comparisons, while the male-specific effects on some phenotypes highlight the importance of including both sexes

    Cannabinoid CB1 Receptor Deletion from Catecholaminergic Neurons Protects from Diet-Induced Obesity

    No full text
    High-calorie diets and chronic stress are major contributors to the development of obesity and metabolic disorders. These two risk factors regulate the activity of the sympathetic nervous system (SNS). The present study showed a key role of the cannabinoid type 1 receptor (CB1) in dopamine β-hydroxylase (dbh)-expressing cells in the regulation of SNS activity. In a diet-induced obesity model, CB1 deletion from these cells protected mice from diet-induced weight gain by increasing sympathetic drive, resulting in reduced adipogenesis in white adipose tissue and enhanced thermogenesis in brown adipose tissue. The deletion of CB1 from catecholaminergic neurons increased the plasma norepinephrine levels, norepinephrine turnover, and sympathetic activity in the visceral fat, which coincided with lowered neuropeptide Y (NPY) levels in the visceral fat of the mutant mice compared with the controls. Furthermore, the mutant mice showed decreased plasma corticosterone levels. Our study provided new insight into the mechanisms underlying the roles of the endocannabinoid system in regulating energy balance, where the CB1 deletion in dbh-positive cells protected from diet-induced weight gain via multiple mechanisms, such as increased SNS activity, reduced NPY activity, and decreased basal hypothalamic-pituitary-adrenal (HPA) axis activity

    Cannabinoid receptor 1 deficiency in a mouse model of Alzheimer's disease leads to enhanced cognitive impairment despite of a reduction in amyloid deposition

    No full text
    Alzheimer's disease (AD) is characterized by amyloid-beta deposition in amyloid plaques, neurofibrillary tangles, inflammation, neuronal loss, and cognitive deficits. Cannabinoids display neuromodulatory and neuroprotective effects and affect memory acquisition. Here, we studied the impact of cannabinoid receptor type 1 (CB1) deficiency on the development of AD pathology by breeding amyloid precursor protein (APP) Swedish mutant mice (APP23), an AD animal model, with CB1-deficient mice. In addition to the lower body weight of APP23/CB1(-/-) mice, most of these mice died at an age before typical AD-associated changes become apparent. The surviving mice showed a reduced amount of APP and its fragments suggesting a regulatory influence of CB1 on APP processing, which was confirmed by modulating CB1 expression in vitro. Reduced APP levels were accompanied by a reduced plaque load and less inflammation in APP23/CB1(-/-) mice. Nevertheless, compared to APP23 mice with an intact CB1, APP23/CB1(-/-) mice showed impaired learning and memory deficits. These data argue against a direct correlation of amyloid plaque load with cognitive abilities in this AD mouse model lacking CB1. Furthermore, the findings indicate that CB1 deficiency can worsen AD-related cognitive deficits and support a potential role of CB1 as a pharmacologic target

    Dnmt3a2/Dnmt3L Overexpression in the Dopaminergic System of Mice Increases Exercise Behavior through Signaling Changes in the Hypothalamus

    Get PDF
    Dnmt3a2, ade novoDNA methyltransferase, is induced by neuronal activity and participates in long-term memory formation with the increased expression of synaptic plasticity genes. We wanted to determine if Dnmt3a2 with its partner Dnmt3L may influence motor behavior via the dopaminergic system. To this end, we generated a mouse line, Dnmt3a2/3L(Dat/wt), with dopamine transporter (DAT) promotor driven Dnmt3a2/3L overexpression. The mice were studied with behavioral paradigms (e.g., cylinder test, open field, and treadmill), brain slice patch clamp recordings, ex vivo metabolite analysis, and in vivo positron emission tomography (PET) using the dopaminergic tracer 6-[F-18]FMT. The results showed that spontaneous activity and exercise performance were enhanced in Dnmt3a2/3L(Dat/wt)mice compared to Dnmt3a2/3L(wt/wt)controls. Dopaminergic substantia nigra pars compacta neurons of Dnmt3a2/3L(Dat/wt)animals displayed a higher fire frequency and excitability. However, dopamine concentration was not increased in the striatum, and dopamine metabolite concentration was even significantly decreased. Striatal 6-[F-18]FMT uptake, reflecting aromatic L-amino acid decarboxylase activity, was the same in Dnmt3a2/3L(Dat/wt)mice and controls. [F-18]FDG PET showed that hypothalamic metabolic activity was tightly linked to motor behavior in Dnmt3a2/3L(Dat/wt)mice. Furthermore, dopamine biosynthesis and motor-related metabolic activity were correlated in the hypothalamus. Our findings suggest that Dnmt3a2/3L, when overexpressed in dopaminergic neurons, modulates motor performance via activation of the nigrostriatal pathway. This does not involve increased dopamine synthesis
    corecore