18 research outputs found

    Pricing and advertising strategies in conceptual waste management planning

    Get PDF
    The paper presents a new model for integration of circular economy strategies into the municipal solid waste management. The goals are to reduce the waste produced, recycle at the highest rate as possible (material recovery) and to use the resultant residual waste for energy recovery. Such a strategy utilizes both pricing and advertising principles in the mixed integer linear programming model while accounting two criterions - assessment of greenhouse gas (GHG) and cost minimization. The aim is to design the optimal waste management grid to suggest a sustainable economy with environmental concerns. The government, municipalities and/or authorized packaging company decide about the investments to the propagation of waste prevention and to advertising of waste recycling, while investors decide about new facility location and technological parameter. The availability of waste is projected in pricing method as well as in the location of the facility. The mathematical model will consider randomness in the form of waste production. The suggested non-linear functions of pricing and advertising are replaced by piecewise linear approximation to reduce computational complexity. The proposed multi-objective model is applied in a case study for the Czech Republic in the area of waste treatment infrastructure planning to support decision-making at the micro-regional level. The integration of circular economy principles, considering also the total amount of produced GHG, revealed the existing potential in waste prevention. On the other hand, the increase of recycling is limited, landfills are not supported and the energy recovery is preferred. However, the planning of the complex system relies on the decision-maker. © 2019 Elsevier LtdCzech Republic Operational Programme Research and Development, Education, Priority 1: Strengthening capacity for quality research [CZ.02.1.01/0.0/0.0/15_003/0000456]; Operational Programme Research, Development and Education, Priority axis 1: Strengthening capacity for high-quality research [CZ.02.1.01/0.0/0.0/16 026/0008392

    Quantity-predictive vehicle routing problem for smart waste collection

    Get PDF
    The current trends in the field of waste management involves the use of modern technologies such as wireless sensors. The smart waste management with Sensor Technology involves an integration of the so-called smart trash bins and containers into existing network by using sensors that fill level of the bins and containers. Apart from the technological aspects of the problem, this arrangement points to the need of development of new decision-making tools that allow collectors to make fast and smart operative decisions on the waste collection. The sensors from the waste containers read the current fill-height once a day and send the information to the central database. The central decision-maker appraises the data and makes the waste collection plan for an entire (e.g., one week) collection period; note that this improves existing models on the data available and used. The aim of this paper is to present complex modelling ideas, develop a simple mathematical model, discuss its complexity and propose/discuss a computational approach in order to solve the collection problem. The objective is to optimize the dynamic planning on daily garbage-truck schedules with respect to minimization of transportation costs that also reflects a positive environmental impact presented by savings in transportation/routing distance. The secondary objective is to optimally decide on early collection of partly-filled containers, especially those directly on or close to the optimum route linking the full ones considering waste production rates in the next days. The paper outlines some directions for further research such as the need of modifying the old-existing models into a form utilizing the newly available data. This leads to specific vehicle routing problems that request appropriate computational time requirements and the need of suitable heuristic methods development. Copyright © 2019, AIDIC Servizi S.r.l

    Biowaste Treatment and Waste-to-Energy - Environmental Benefits

    Get PDF
    Biowaste represents a significant fraction of municipal solid waste (MSW). Its separate collection is considered as a useful measure to enhance waste management systems in both the developed and developing world. This paper aims to compare the environmental performance of three market-ready technologies currently used to treat biowaste—biowaste composting, fermentation, and biowaste incineration in waste-to-energy (WtE) plants as a component of residual municipal solid waste (RES). Global warming potential (GWP) was applied as an indicator and burdens related to the operation of facilities and credits obtained through the products were identified. The environmental performance of a WtE plant was investigated in detail using a model, implementing an approach similar to marginal-cost and revenues, which is a concept widely applied in economics. The results show that all of the treatment options offer an environmentally friendly treatment (their net GWP is negative). The environmental performance of a WtE plant is profoundly affected by its mode of its operation, i.e., type of energy exported. The concept producing environmental credits at the highest rate is co-incineration of biowaste in a strictly heat-oriented WtE plant. Anaerobic digestion plants treating biowaste by fermentation produce fewer credits, but approximately twice as more credits as WtE plants with power delivery only

    Design and Decomposition of Waste Prognostic Model with Hierarchical Structures

    Get PDF
    The waste management is a dynamically progressive area, with the current trend leading to circular economy scheme. The development in this area requires quality prognosis reflecting the analysed timeframe. The forecast of the waste production and composition of waste is an important aspect with regards to the planning in waste management. However, the regular prognostic methods are not appropriate for these purposes due to short time series of historical data and unavailability of socio-economic data. The paper proposes a general approach via mathematical model for forecasting of future waste-related parameters based on spatially distributed data with hierarchical structure. The approach is based on principles of regression analysis with final balance to ensure the compliance of aggregated data values. The selection of the regression function is a part of mathematical model for high-quality description of data trend. In addition, outlier values are cleared, which occur abundantly in the database. The decomposition of the model into subtasks is performed in order to simpler implementation and reasonable time solvability. The individual algorithm steps are applied to municipal waste production data in the Czech Republic

    A Multi-Commodity Mathematical Modelling Approach—Hazardous Waste Treatment Infrastructure Planning in the Czech Republic

    Get PDF
    This paper presents an analysis of infrastructure for the processing of Czech hazardous waste and pays attention to predictions of waste management development in the upcoming years. For this purpose, a unique complex approach to modelling future waste management changes is applied. The method uses a multi-commodity network flow model with reverse flows between treatment facilities to consider complete waste management of hazardous waste. The future outlook (2030) for the forecasted generation of different types of hazardous waste in the Czech Republic requires decisions on waste treatment facility infrastructure. The uniqueness lies in using real data for such a wide scope of a task, further enhanced by concurrent analysis of more types of waste interconnected through limited processing capacities. The results indicate the insufficiency in hazardous waste thermal treatment and stabilization. A suggestion is to extend the incineration capacity because it influences the stabilization units, which must process the remaining waste. The recommended increase is 100% with different proportions in individual regions

    Programový systém pro generování, analýzu a zpracování signálu

    No full text
    Import 20/04/2006Prezenční výpůjčkaFakulta strojní VŠB (Ostrava). Katedra automatizační techniky a řízení (352

    Modelling of Change in Fuel Mix within a District Heating Network

    Get PDF
    Changing the fuel mix used in the heating industry, i.e., switching to greener fuels, is one of the possible solutions to prevent rising costs for final consumers in the context of rising emission allowance prices. This paper presents a methodology that offers the possibility to perform a comprehensive technical and economic assessment of a theoretical solution—changing the fuel mix of centralized heating sources—and other strategic decisions within a district’s heating systems. Emphasis is placed on fuels with a negative price, such as municipal waste. The presented approach can also be used to assess the effect of other significant changes related to the configuration of district heating systems on the economy of the plant, such as the impact of a decrease in heat demand and implementation of a steam turbine. The key benefit of this paper is an approach based on mathematical modelling of the operation of individual boilers with different operating parameters in terms of their start-up, shutdown, and mode of operation. A unique approach of optimizing an operation’s schedule using dynamic programming is presented, which enables the selection of a suitable solution for the configuration of binary variables in consecutive time steps. In this way, it is possible to achieve a more accurate estimate of the economics of the facility at the strategic planning stage that will consider the real operational capabilities of the heat source given its technical limitations. Using this approach, up to a 4% reduction in variable operating costs was achieved in the model case, when compared to static time interval planning

    greenhousegasemissionsfromthermaltreatmentofnonrecyclablemunicipalwaste

    No full text
    This paper analyses factors affecting the production of greenhouse gases from the treatment of residual municipal waste. The analysis is conducted so that the environmentally-friendly decision-making criteria may be later implemented into an optimisation task, which allocates waste treatment capacities. A simplified method of life cycle assessment is applied to describe environmental impact of the allocation. Global warming potential (GWP) is employed as a unit to quantify greenhouse gases (GHG) emissions. The objective is to identify the environmental burdens and credits measured by GWP for the three fundamental methods for treatment of residual waste unsuitable for material recovery. The three methods are waste-to-energy (WTE), landfilling and mechanicalbiological treatment (MBT) with subsequent utilization of refuse-derived fuel. The composition of the waste itself and content of fossil-derived carbon and biogenic carbon are important parameters to identify amounts of GHG. In case of WTE, subsequent use of the energy, e.g., in district heating systems in case of heat, is another important parameter to be considered. GWP function dependant on WTE capacity is introduced. The conclusion of this paper provides an assessment of the potential benefits of the results in optimisation tasks for the planning of overall strategy in waste management

    greenhousegasemissionsfromthermaltreatmentofnonrecyclablemunicipalwaste

    No full text
    This paper analyses factors affecting the production of greenhouse gases from the treatment of residual municipal waste. The analysis is conducted so that the environmentally-friendly decision-making criteria may be later implemented into an optimisation task, which allocates waste treatment capacities. A simplified method of life cycle assessment is applied to describe environmental impact of the allocation. Global warming potential (GWP) is employed as a unit to quantify greenhouse gases (GHG) emissions. The objective is to identify the environmental burdens and credits measured by GWP for the three fundamental methods for treatment of residual waste unsuitable for material recovery. The three methods are waste-to-energy (WTE), landfilling and mechanicalbiological treatment (MBT) with subsequent utilization of refuse-derived fuel. The composition of the waste itself and content of fossil-derived carbon and biogenic carbon are important parameters to identify amounts of GHG. In case of WTE, subsequent use of the energy, e.g., in district heating systems in case of heat, is another important parameter to be considered. GWP function dependant on WTE capacity is introduced. The conclusion of this paper provides an assessment of the potential benefits of the results in optimisation tasks for the planning of overall strategy in waste management
    corecore