126 research outputs found

    sparr: Analyzing Spatial Relative Risk Using Fixed and Adaptive Kernel Density Estimation in R

    Get PDF
    The estimation of kernel-smoothed relative risk functions is a useful approach to examining the spatial variation of disease risk. Though there exist several options for performing kernel density estimation in statistical software packages, there have been very few contributions to date that have focused on estimation of a relative risk function per se . Use of a variable or adaptive smoothing parameter for estimation of the individual densities has been shown to provide additional benefits in estimating relative risk and specific computational tools for this approach are essentially absent. Furthermore, little attention has been given to providing methods in available software for any kind of subsequent analysis with respect to an estimated risk function. To facilitate analyses in the field, the R package sparr is introduced, providing the ability to construct both fixed and adaptive kernel-smoothed densities and risk functions, identify statistically significant fluctuations in an estimated risk function through the use of asymptotic tolerance contours, and visualize these objects in flexible and attractive ways.

    Boundary kernels for adaptive density estimators on regions with irregular boundaries

    Get PDF
    AbstractIn some applications of kernel density estimation the data may have a highly non-uniform distribution and be confined to a compact region. Standard fixed bandwidth density estimates can struggle to cope with the spatially variable smoothing requirements, and will be subject to excessive bias at the boundary of the region. While adaptive kernel estimators can address the first of these issues, the study of boundary kernel methods has been restricted to the fixed bandwidth context. We propose a new linear boundary kernel which reduces the asymptotic order of the bias of an adaptive density estimator at the boundary, and is simple to implement even on an irregular boundary. The properties of this adaptive boundary kernel are examined theoretically. In particular, we demonstrate that the asymptotic performance of the density estimator is maintained when the adaptive bandwidth is defined in terms of a pilot estimate rather than the true underlying density. We examine the performance for finite sample sizes numerically through analysis of simulated and real data sets

    sparr: Analyzing Spatial Relative Risk Using Fixed and Adaptive Kernel Density Estimation in R

    Get PDF
    The estimation of kernel-smoothed relative risk functions is a useful approach to examining the spatial variation of disease risk. Though there exist several options for performing kernel density estimation in statistical software packages, there have been very few contributions to date that have focused on estimation of a relative risk function per se. Use of a variable or adaptive smoothing parameter for estimation of the individual densities has been shown to provide additional benefits in estimating relative risk and specific computational tools for this approach are essentially absent. Furthermore, little attention has been given to providing methods in available software for any kind of subsequent analysis with respect to an estimated risk function. To facilitate analyses in the field, the R package sparr is introduced, providing the ability to construct both fixed and adaptive kernel-smoothed densities and risk functions, identify statistically significant fluctuations in an estimated risk function through the use of asymptotic tolerance contours, and visualize these objects in flexible and attractive ways

    Computation of Equilibrium Distributions of Markov Traffic-Assignment Models

    Get PDF
    Markov traffic-assignment models explicitly represent the day-to-day evolving interaction between traffic congestion and drivers' information acquisition and choice processes. Such models can, in principle, be used to investigate traffic flows in stochastic equilibrium, yielding estimates of the equilibrium mean and covariance matrix of link or route traffic flows. However, in general these equilibrium moments cannot be written down in closed form. While Monte Carlo simulations of the assignment process may be used to produce “empirical” estimates, this approach can be extremely computationally expensive if reliable results (relatively free of Monte Carlo error) are to be obtained. In this paper an alternative method of computing the equilibrium distribution is proposed, applicable to the class of Markov models with linear exponential learning filters. Based on asymptotic results, this equilibrium distribution may be approximated by a Gaussian process, meaning that the problem reduces to determining the first two multivariate moments in equilibrium. The first of these moments, the mean flow vector, may be estimated by a conventional traffic-assignment model. The second, the flow covariance matrix, is estimated through various linear approximations, yielding an explicit expression. The proposed approximations are seen to operate well in a number of illustrative examples. The robustness of the approximations (in terms of network input data) is discussed, and shown to be connected with the “volatility” of the traffic assignment process

    Relaxed observance of traditional marriage rules allows social connectivity without loss of genetic diversity

    Get PDF
    © 2015 The Author. Marriage rules, the community prescriptions that dictate who an individual can or cannot marry, are extremely diverse and universally present in traditional societies. A major focus of research in the early decades of modern anthropology, marriage rules impose social and economic forces that help structure societies and forge connections between them. However, in those early anthropological studies, the biological benefits or disadvantages of marriage rules could not be determined. We revisit this question by applying a novel simulation framework and genome-wide data to explore the effects of Asymmetric Prescriptive Alliance, an elaborate set of marriage rules that has been a focus of research for many anthropologists. Simulations show that strict adherence to these marriage rules reduces genetic diversity on the autosomes, X chromosome and mitochondrial DNA, but relaxed compliance produces genetic diversity similar to random mating. Genome-wide data from the Indonesian community of Rindi, one of the early study populations for Asymmetric Prescriptive Alliance, are more consistent with relaxed compliance than strict adherence. We therefore suggest that, in practice, marriage rules are treated with sufficient flexibility to allow social connectivity without significant degradation of biological diversity

    Comparing benefits from many possible computed tomography lung cancer screening programs: Extrapolating from the National Lung Screening Trial using comparative modeling

    Get PDF
    Background: The National Lung Screening Trial (NLST) demonstrated that in current and former smokers aged 55 to 74 years, with at least 30 pack-years of cigarette smoking history and who had quit smoking no more than 15 years ago, 3 annual computed tomography (CT) screens reduced lung cancer-specific mortality by 20% relative to 3 annual chest X-ray screens. We compared the benefits achievable with 576 lung cancer screening programs that varied CT screen number and frequency, ages of screening, and eligibility based on smoking. Methods and Findings: We used five independent microsimulation models with lung cancer natural history parameters previously calibrated to the NLST to simulate life histories of the US cohort born in 1950 under all 576 programs. 'Efficient' (within model) programs prevented the greatest number of lung cancer deaths, compared to no screening, for a given number of CT screens. Among 120 'consensus efficient' (identified as efficient across models) programs, the average starting age was 55 years, the stopping age was 80 or 85 years, the average minimum pack-years was 27, and the maximum years since quitting was 20. Among consensus efficient programs, 11% to 40% of the cohort was screened, and 153 to 846 lung cancer deaths were averted per 100,000 people. In all models, annual screening based on age and smoking eligibility in NLST was not efficient; continuing screening to age 80 or 85 years was more efficient. Conclusions: Consensus results from five models identified a set of efficient screening programs that include annual CT lung cancer screening using criteria like NLST eligibility but extended to older ages. Guidelines for screening should also consider harms of screening and individual patient characteristics

    Real-time imaging of density ducts between the plasmasphere and ionosphere

    Get PDF
    Ionization of the Earth's atmosphere by sunlight forms a complex, multilayered plasma environment within the Earth's magnetosphere, the innermost layers being the ionosphere and plasmasphere. The plasmasphere is believed to be embedded with cylindrical density structures (ducts) aligned along the Earth's magnetic field, but direct evidence for these remains scarce. Here we report the first direct wide-angle observation of an extensive array of field-aligned ducts bridging the upper ionosphere and inner plasmasphere, using a novel ground-based imaging technique. We establish their heights and motions by feature tracking and parallax analysis. The structures are strikingly organized, appearing as regularly spaced, alternating tubes of overdensities and underdensities strongly aligned with the Earth's magnetic field. These findings represent the first direct visual evidence for the existence of such structures

    Quantifying ionospheric effects on time-domain astrophysics with the Murchison Widefield Array

    Get PDF
    © 2015 The Authors. Published by Oxford University Press on behalf of the Royal Astronomical Society. Refraction and diffraction of incoming radio waves by the ionosphere induce time variability in the angular positions, peak amplitudes and shapes of radio sources, potentially complicating the automated cross-matching and identification of transient and variable radio sources. In this work, we empirically assess the effects of the ionosphere on data taken by the Murchison Widefield Array (MWA) radio telescope. We directly examine 51 h of data observed over 10 nights under quiet geomagnetic conditions (global storm index Kp < 2), analysing the behaviour of short-time-scale angular position and peak flux density variations of around ten thousand unresolved sources. We find that while much of the variation in angular position can be attributed to ionospheric refraction, the characteristic displacements (10-20 arcsec) at 154 MHz are small enough that search radii of 1-2 arcmin should be sufficient for crossmatching under typical conditions. By examining bulk trends in amplitude variability, we place upper limits on the modulation index associated with ionospheric scintillation of 1-3 per cent for the various nights. For sources fainter than ~1 Jy, this variation is below the image noise at typical MWA sensitivities. Our results demonstrate that the ionosphere is not a significant impediment to the goals of time-domain science with the MWA at 154 MHz
    • 

    corecore