685 research outputs found

    Cellular sources of dysregulated cytokines in relapsing-remitting multiple sclerosis

    Get PDF
    BACKGROUND: Numerous cytokines are implicated in the immunopathogenesis of multiple sclerosis (MS), but studies are often limited to whole blood (WB) or peripheral blood mononuclear cells (PBMCs), thereby omitting important information about the cellular origin of the cytokines. Knowledge about the relation between blood and cerebrospinal fluid (CSF) cell expression of cytokines and the cellular source of CSF cytokines is even more scarce. METHODS: We studied gene expression of a broad panel of cytokines in WB from relapsing-remitting multiple sclerosis (RRMS) patients in remission and healthy controls (HCs). Subsequently we determined the gene expression of the dysregulated cytokines in isolated PBMC subsets (CD4(+), CD8(+)T-cells, NK-cells, B-cells, monocytes and dendritic cells) from RRMS patients and HCs and in CSF-cells from RRMS patients in clinical relapse and non-inflammatory neurological controls (NIND). RESULTS: RRMS patients had increased expression of IFN-gamma (IFNG), interleukin (IL) 1-beta (IL1B), IL7, IL10, IL12A, IL15, IL23, IL27, lymphotoxin-alpha (LTA) and lymphotoxin-beta (LTB) in WB. In PBMC subsets the main sources of pro-inflammatory cytokines were T- and B-cells, whereas monocytes were the most prominent source of immunoregulatory cytokines. In CSF-cells, RRMS patients had increased expression of IFNG and CD19 and decreased expression of IL10 and CD14 compared to NINDs. CD19 expression correlated with expression of IFNG, IL7, IL12A, IL15 and LTA whereas CD14 expression correlated with IL10 expression. CONCLUSIONS: Using a systematic approach, we show that expression of pro-inflammatory cytokines in peripheral blood primarily originates from T- and B-cells, with an important exception of IFNG which is most strongly expressed by NK-cells. In CSF-cell studies, B-cells appear to be enriched in RRMS and associated with expression of pro-inflammatory cytokines; contrarily, monocytes are relatively scarce in CSF from RRMS patients and are associated with IL10 expression. Thus, our findings suggest a pathogenetic role of B-cells and an immunoregulatory role of monocytes in RRMS

    The resting human brain and motor learning.

    Get PDF
    Functionally related brain networks are engaged even in the absence of an overt behavior. The role of this resting state activity, evident as low-frequency fluctuations of BOLD (see [1] for review, [2-4]) or electrical [5, 6] signals, is unclear. Two major proposals are that resting state activity supports introspective thought or supports responses to future events [7]. An alternative perspective is that the resting brain actively and selectively processes previous experiences [8]. Here we show that motor learning can modulate subsequent activity within resting networks. BOLD signal was recorded during rest periods before and after an 11 min visuomotor training session. Motor learning but not motor performance modulated a fronto-parietal resting state network (RSN). Along with the fronto-parietal network, a cerebellar network not previously reported as an RSN was also specifically altered by learning. Both of these networks are engaged during learning of similar visuomotor tasks [9-22]. Thus, we provide the first description of the modulation of specific RSNs by prior learning--but not by prior performance--revealing a novel connection between the neuroplastic mechanisms of learning and resting state activity. Our approach may provide a powerful tool for exploration of the systems involved in memory consolidation

    Waist-to-Height Ratio Is More Predictive of Years of Life Lost than Body Mass Index

    Get PDF
    Objective: Our aim was to compare the effect of central obesity (measured by waist-to-height ratio, WHtR) and total obesity (measured by body mass index, BMI) on life expectancy expressed as years of life lost (YLL), using data on British adults. Methods: A Cox proportional hazards model was applied to data from the prospective Health and Lifestyle Survey (HALS) and the cross sectional Health Survey for England (HSE). The number of years of life lost (YLL) at three ages (30, 50, 70 years) was found by comparing the life expectancies of obese lives with those of lives at optimum levels of BMI and WHtR. Results: Mortality risk associated with BMI in the British HALS survey was similar to that found in US studies. However, WHtR was a better predictor of mortality risk. For the first time, YLL have been quantified for different values of WHtR. This has been done for both sexes separately and for three representative ages. Conclusion: This study supports the simple message ‘‘Keep your waist circumference to less than half your height’’. The use of WHtR in public health screening, with appropriate action, could help add years to life

    Avian influenza a virus in wild birds in highly urbanized areas

    Get PDF
    Avian influenza virus (AIV) surveillance studies in wild birds are usually conducted in rural areas and nature reserves. Less is known of avian influenza virus prevalence in wild birds located in densely populated urban areas, while these birds are more likely to be in close contact with humans. Influenza virus prevalence was investigated in 6059 wild birds sampled in cities in the Netherlands between 2006 and 2009, and compared with parallel AIV surveillance data from low urbanized areas in the Netherlands. Viral prevalence varied with the level of urbanization, with highest prevalence in low urbanized areas. Within cities virus was detected in 0.5% of birds, while seroprevalence exceeded 50%. Ring recoveries of urban wild birds sampled for virus detection demonstrated that most birds were sighted within the same city, while few were sighted in other cities or migrated up to 2659 km away from the sample location in the Netherlands. Here we show that urban birds were infected with AIVs and that urban birds were not separated completely from populations of long-distance migrants. The latter suggests that wild birds in cities may play a role in the introduction of AIVs into cities. Thus, urban bird populations should not be excluded as a human-animal interface for influenza viruses

    Rethinking interhemispheric imbalance as a target for stroke neurorehabilitation

    Get PDF
    © 2019 American Neurological Association Objective: Patients with chronic stroke have been shown to have failure to release interhemispheric inhibition (IHI) from the intact to the damaged hemisphere before movement execution (premovement IHI). This inhibitory imbalance was found to correlate with poor motor performance in the chronic stage after stroke and has since become a target for therapeutic interventions. The logic of this approach, however, implies that abnormal premovement IHI is causal to poor behavioral outcome and should therefore be present early after stroke when motor impairment is at its worst. To test this idea, in a longitudinal study, we investigated interhemispheric interactions by tracking patients’ premovement IHI for one year following stroke. Methods: We assessed premovement IHI and motor behavior five times over a 1-year period after ischemic stroke in 22 patients and 11 healthy participants. Results: We found that premovement IHI was normal during the acute/subacute period and only became abnormal at the chronic stage; specifically, release of IHI in movement preparation worsened as motor behavior improved. In addition, premovement IHI did not correlate with behavioral measures cross-sectionally, whereas the longitudinal emergence of abnormal premovement IHI from the acute to the chronic stage was inversely correlated with recovery of finger individuation. Interpretation: These results suggest that interhemispheric imbalance is not a cause of poor motor recovery, but instead might be the consequence of underlying recovery processes. These findings call into question the rehabilitation strategy of attempting to rebalance interhemispheric interactions in order to improve motor recovery after stroke. Ann Neurol 2019;85:502–513

    Preliminary study: Treatment with intramuscular interferon beta-1a results in increased levels of IL-12Rβ2+ and decreased levels of IL23R+ CD4+ T - Lymphocytes in multiple sclerosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There are a lack of biomarkers which can be used to predict clinical outcomes for multiple sclerosis (MS) patients receiving interferon beta (IFN-β). Thus the objective of this study was to characterize changes in CD4+ T-lymphocyte expression in an unbiased manner following initiation of intramuscular (IM) IFN-β-1a treatment, and then to verify those findings using marker-specific assays.</p> <p>Methods</p> <p>Peripheral blood specimens were collected from twenty MS patients before and after treatment with intramuscular (IM) IFN-β-1a and were used for isolation of mononuclear cells (PBMCs). mRNA expression patterns of negatively-selected CD4+ T-cells from the PBMCs were analyzed using microarray gene expression technology. IL-12 and IL-23 receptor levels on PBMC-derived CD4+ T-cells were analyzed by flow cytometry. The phosphorylation status of Stat4 was measured by performing densitometry on western blots.</p> <p>Results</p> <p>Microarray analyses demonstrated that mRNA expression of the IL-12Rβ2 gene was uniformly up-regulated in response to IFN-β-1a treatment and was associated with an increased number of IL-12Rβ2<sup>+ </sup>CD4<sup>+ </sup>T-cells by flow cytometry in 4 of 6 patients. This finding was substantiated by demonstrating that Stat4 phosphorylation, a transcription factor for IL-12, was increased after treatment. Conversely, the number of IL-23R<sup>+ </sup>CD4<sup>+ </sup>T-cells was decreased following treatment.</p> <p>Conclusions</p> <p>The IL-12 receptor shares a common subunit, the IL-12Rβ2, with the IL-23 receptor. Both of these receptors have a probable role in regulating IL-17 and TH-17 cells, important mediators of inflammation in multiple sclerosis (MS). Thus, the changes in the numbers of CD4<sup>+ </sup>T-cells expressing these receptors in response to IFN-β-1a treatment may point to an important mechanism of action for this drug, but further large scale studies are needed to confirm these preliminary observations.</p

    An Explicit Strategy Prevails When the Cerebellum Fails to Compute Movement Errors

    Get PDF
    In sensorimotor adaptation, explicit cognitive strategies are thought to be unnecessary because the motor system implicitly corrects performance throughout training. This seemingly automatic process involves computing an error between the planned movement and actual feedback of the movement. When explicitly provided with an effective strategy to overcome an experimentally induced visual perturbation, people are immediately successful and regain good task performance. However, as training continues, their accuracy gets worse over time. This counterintuitive result has been attributed to the independence of implicit motor processes and explicit cognitive strategies. The cerebellum has been hypothesized to be critical for the computation of the motor error signals that are necessary for implicit adaptation. We explored this hypothesis by testing patients with cerebellar degeneration on a motor learning task that puts the explicit and implicit systems in conflict. Given this, we predicted that the patients would be better than controls in maintaining an effective strategy assuming strategic and adaptive processes are functionally and neurally independent. Consistent with this prediction, the patients were easily able to implement an explicit cognitive strategy and showed minimal interference from undesirable motor adaptation throughout training. These results further reveal the critical role of the cerebellum in an implicit adaptive process based on movement errors and suggest an asymmetrical interaction of implicit and explicit processes
    corecore