1,588 research outputs found

    de Sitter limit of inflation and nonlinear perturbation theory

    Full text link
    We study the fourth order action of the comoving curvature perturbation in an inflationary universe in order to understand more systematically the de Sitter limit in nonlinear cosmological perturbation theory. We derive the action of the curvature perturbation to fourth order in the comoving gauge, and show that it vanishes sufficiently fast in the de Sitter limit. By studying the de Sitter limit, we then extrapolate to the n'th order action of the comoving curvature perturbation and discuss the slow-roll order of the n-point correlation function.Comment: 14 pages, 1 figure; typos corrected and discussion of tensor modes adde

    Transition Voltage Spectroscopy and the Nature of Vacuum Tunneling

    Full text link
    Transition Voltage Spectroscopy (TVS) has been proposed as a tool to analyze charge transport through molecular junctions. We extend TVS to Au-vacuum-Au junctions and study the distance dependence of the transition voltage V_t(d) for clean electrodes in cryogenic vacuum. On the one hand, this allows us to provide an important reference for V_t(d)-measurements on molecular junctions. On the other hand, we show that TVS forms a simple and powerful test for vacuum tunneling models

    Combined Grazing and Drought Stress Alter the Outcome of Nurse: Beneficiary Interactions in a Semi-arid Ecosystem

    Get PDF
    Positive interspecific plant–plant interactions in (semi-)arid ecosystems are crucial for supporting ecosystem diversity and stability, but how interactions respond to grazing combined with temporal variation in drought is poorly understood. In a semi-arid area in south-eastern Spain (Murcia region), we planted 1280 saplings of the palatable shrub Anthyllis cytisoides (beneficiary) under the canopy of the unpalatable shrub Artemisia herba-alba (nurse) or in open microsites between shrub patches. We applied four grazing treatments (no grazing, low goat grazing pressure, high goat grazing pressure and rabbit grazing) and two watering treatments. Sapling height and survival were followed for two consecutive years, during which one extreme drought event occurred. We analysed how grazing, watering and their combination affected nurse effects throughout the course of the study. Grazing and the drought event, but not watering, significantly altered the nurse effects. Under ungrazed conditions prior to the extreme drought event, nurse effects on sapling survival were neutral, whereas they were positive at rabbit-grazed plots. At low goat grazing, sapling growth was higher under nurse shrubs than in open microsites. However, after the extreme drought event, sapling survival was higher in open microsites at ungrazed plots, whereas at rabbit-grazed plots, nurse effects shifted from positive to neutral. Our findings highlight the importance of rabbit grazing in determining the direction of plant–plant interactions in arid ecosystems. Moreover, our findings support the idea that positive plant–plant interactions may wane under the combination of high grazing and drought stress.This study has been supported by a NWO—ALW Open Program Grant (Netherlands Science Foundation— Earth and Life Sciences, project number 820.01.020), the projects CASCADE (Grant Agreement 283068) funded by the Seventh Framework Programme FP7/2007e2013 and FEEDBACK (Grant #CGL2011-30515- C02-01) and DRYEX (Grant #CGL2014-59074-R) funded by the Spanish Ministry of Economy and Competitiveness

    Epitaxy and magnetotransport of Sr_2FeMoO_6 thin films

    Full text link
    By pulsed-laser deposition epitaxial thin films of Sr_2FeMoO_6 have been pre- pared on (100) SrTiO_3 substrates. Already for a deposition temperature of 320 C epitaxial growth is achieved. Depending on deposition parameters the films show metallic or semiconducting behavior. At high (low) deposition temperature the Fe,Mo sublattice has a rock-salt (random) structure. The metallic samples have a large negative magnetoresistance which peaks at the Curie temperature. The magnetic moment was determined to 4 mu_B per formula unit (f.u.), in agreement with the expected value for an ideal ferrimagnetic arrangement. We found an ordinary Hall coefficient of -6.01x10^{-10} m^3/As at 300 K, corresponding to an electronlike charge-carrier density of 1.3 per Fe,Mo-pair. In the semiconducting films the magnetic moment is reduced to 1 mu_B/f.u. due to disorder in the Fe,Mo sublattice. In low fields an anomalous holelike contribution dominates the Hall voltage, which vanishes at low temperatures for the metallic films only.Comment: Institute of Physics, University of Mainz, Germany, 4 pages, including 5 pictures and 1 Table, submitted to Phys. Rev.

    Low-energy electric dipole response in 120Sn

    Get PDF
    The electric dipole strength in 120Sn has been extracted from proton inelastic scattering experiments at E_p = 295 MeV and at forward angles including 0 degree. Below neutron threshoild it differs from the results of a 120Sn(gamma,gamma') experiment and peaks at an excitation energy of 8.3 MeV. The total strength corresponds to 2.3(2)% of the energy-weighted sum rule and is more than three times larger than what is observed with the (gamma,gamma') reaction. This implies a strong fragmentation of the E1 strength and/or small ground state branching ratios of the excited 1- states.Comment: 7 pages, 6 figure

    Advanced fluorescence microscopy reveals disruption of dynamic CXCR4 dimerization by subpocket-specific inverse agonists

    Get PDF
    Funding: This research was funded by European Union’s Horizon2020 Marie Skłodowska-Curie Actions (MSCA) Program under Grant Agreement 641833 (ONCORNET) and European Cooperation in Science and Technology (COST) Action CA18133 European Research Network on Signal Transduction (ERNEST). A. Inoue was funded by the Leading Advanced Projects for Medical Innovation (LEAP) JP19gm0010004 from the Japan Agency for Medical Research and Development.Although class A G protein−coupled receptors (GPCRs) can function as monomers, many of them form dimers and oligomers, but the mechanisms and functional relevance of such oligomerization is ill understood. Here, we investigate this problem for the CXC chemokine receptor 4 (CXCR4), a GPCR that regulates immune and hematopoietic cell trafficking, and a major drug target in cancer therapy. We combine single-molecule microscopy and fluorescence fluctuation spectroscopy to investigate CXCR4 membrane organization in living cells at densities ranging from a few molecules to hundreds of molecules per square micrometer of the plasma membrane. We observe that CXCR4 forms dynamic, transient homodimers, and that the monomer−dimer equilibrium is governed by receptor density. CXCR4 inverse agonists that bind to the receptor minor pocket inhibit CXCR4 constitutive activity and abolish receptor dimerization. A mutation in the minor binding pocket reduced the dimer-disrupting ability of these ligands. In addition, mutating critical residues in the sixth transmembrane helix of CXCR4 markedly diminished both basal activity and dimerization, supporting the notion that CXCR4 basal activity is required for dimer formation. Together, these results link CXCR4 dimerization to its density and to its activity. They further suggest that inverse agonists binding to the minor pocket suppress both dimerization and constitutive activity and may represent a specific strategy to target CXCR4.Publisher PDFPeer reviewe

    Dipole polarizability of 120Sn and nuclear energy density functionals

    Full text link
    The electric dipole strength distribution in 120Sn between 5 and 22 MeV has been determined at RCNP Osaka from a polarization transfer analysis of proton inelastic scattering at E_0 = 295 MeV and forward angles including 0{\deg}. Combined with photoabsorption data an electric dipole polarizability \alpha_D(120Sn) = 8.93(36) fm^3 is extracted. The dipole polarizability as isovector observable par excellence carries direct information on the nuclear symmetry energy and its density dependence. The correlation of the new value with the well established \alpha_D(208Pb) serves as a test of its prediction by nuclear energy density functionals (EDFs). Models based on modern Skyrme interactions describe the data fairly well while most calculations based on relativistic Hamiltonians cannot.Comment: 6 pages, 4 figure

    Plasmonic communications : light on a wire

    Get PDF
    The emerging field of plasmonics promises the generation, processing, transmission, sensing and detection of signals at optical frequencies along metallic surfaces much smaller than the wavelengths they carry. Plasmonic technology has applications in a wide range of fields, including biophotonics, sensing, chemistry and medicine. But perhaps the area where it will have the most profound impact is in optical communications, since plasmonic waves oscillate at optical frequencies and thus can carry information at optical bandwidths

    Effective Lagrangian for strongly coupled domain wall fermions

    Get PDF
    We derive the effective Lagrangian for mesons in lattice gauge theory with domain-wall fermions in the strong-coupling and large-N_c limits. We use the formalism of supergroups to deal with the Pauli-Villars fields, needed to regulate the contributions of the heavy fermions. We calculate the spectrum of pseudo-Goldstone bosons and show that domain wall fermions are doubled and massive in this regime. Since we take the extent and lattice spacing of the fifth dimension to infinity and zero respectively, our conclusions apply also to overlap fermions.Comment: 26 pp. RevTeX and 3 figures; corrected error in symmetry breaking scheme and added comments to discussio
    • …
    corecore