51 research outputs found

    From heaviness to lightness during inflation

    Full text link
    We study the quantum fluctuations of scalar fields with a variable effective mass during an inflationary phase. We consider the situation where the effective mass depends on a background scalar field, which evolves during inflation from being frozen into a damped oscillatory phase when the Hubble parameter decreases below its mass. We find power spectra with suppressed amplitude on large scales, similar to the standard massless spectrum on small scales, and affected by modulations on intermediate scales. We stress the analogies and differences with the parametric resonance in the preheating scenario. We also discuss some potentially observable consequences when the scalar field behaves like a curvaton.Comment: 23 pages; 8 figures; published versio

    Fermionic massive modes along cosmic strings

    Get PDF
    The influence on cosmic string dynamics of fermionic massive bound states propagating in the vortex, and getting their mass only from coupling to the string forming Higgs field, is studied. Such massive fermionic currents are numerically found to exist for a wide range of model parameters and seen to modify drastically the usual string dynamics coming from the zero mode currents alone. In particular, by means of a quantization procedure, a new equation of state describing cosmic strings with any kind of fermionic current, massive or massless, is derived and found to involve, at least, one state parameter per trapped fermion species. This equation of state exhibits transitions from subsonic to supersonic regimes while the massive modes are filled.Comment: 27 pages, 15 figures, uses ReVTeX. Shortened version, accepted for publication in Phys. Rev.

    Fine-Tuning in DBI Inflationary Mechanism

    Full text link
    We show a model-independent fine-tuning issue in the DBI inflationary mechanism. DBI inflation requires a warp factor h small enough to sufficiently slow down the inflaton. On the other hand, the Einstein equation in extra dimensions under the inflationary background deforms the warp space in the IR side. Generically these two locations coincide with each other, spoiling the DBI inflation. The origin and tuning of this ``h-problem'' is closely related, through the AdS/CFT duality, to those of the well-known ``eta-problem'' in the slow-roll inflationary mechanism.Comment: 13 pages; v4, several discussions expanded, JCAP versio

    Brane inflation and the WMAP data: a Bayesian analysis

    Get PDF
    The Wilkinson Microwave Anisotropy Probe (WMAP) constraints on string inspired ''brane inflation'' are investigated. Here, the inflaton field is interpreted as the distance between two branes placed in a flux-enriched background geometry and has a Dirac-Born-Infeld (DBI) kinetic term. Our method relies on an exact numerical integration of the inflationary power spectra coupled to a Markov-Chain Monte-Carlo exploration of the parameter space. This analysis is valid for any perturbative value of the string coupling constant and of the string length, and includes a phenomenological modelling of the reheating era to describe the post-inflationary evolution. It is found that the data favour a scenario where inflation stops by violation of the slow-roll conditions well before brane annihilation, rather than by tachyonic instability. Concerning the background geometry, it is established that log(v) > -10 at 95% confidence level (CL), where "v" is the dimensionless ratio of the five-dimensional sub-manifold at the base of the six-dimensional warped conifold geometry to the volume of the unit five-sphere. The reheating energy scale remains poorly constrained, Treh > 20 GeV at 95% CL, for an extreme equation of state (wreh ~ -1/3) only. Assuming the string length is known, the favoured values of the string coupling and of the Ramond-Ramond total background charge appear to be correlated. Finally, the stochastic regime (without and with volume effects) is studied using a perturbative treatment of the Langevin equation. The validity of such an approximate scheme is discussed and shown to be too limited for a full characterisation of the quantum effects.Comment: 65 pages, 15 figures, uses iopart. Shortened version, updated references. Matches publication up to appendix B kept on the arXi

    Production of topological defects at the end of inflation

    Get PDF
    Hybrid inflation within supersymmetric grand unified theories, as well as inflation through brane collisions within braneworld cosmological models, lead to the formation of one-dimensional defects. Observational data, mainly from the cosmic microwave background temperature anisotropies but also from the gravitational wave background, impose constraints on the free parameters of the models. I review these inflationary models and discuss the constraints from the currently available data.Comment: 9 pages, Invited talk in the Conference "Challenges in Particle Astrophysics" -- 6th Rencontres du Vietnam, Hanoi (Vietnam) 6-12 Aug. 200

    DBI Inflation using a One-Parameter Family of Throat Geometries

    Full text link
    We demonstrate the possibility of examining cosmological signatures in the DBI inflation setup using the BGMPZ solution, a one-parameter family of geometries for the warped throat which interpolate between the Maldacena-Nunez and Klebanov-Strassler solutions. The warp factor is determined numerically and subsequently used to calculate cosmological observables including the scalar and tensor spectral indices, for a sample point in the parameter space. As one moves away from the KS solution for the throat the warp factor is qualitatively different, which leads to a significant change for the observables, but also generically increases the non-Gaussianity of the models. We argue that the different models can potentially be differentiated by current and future experiments.Comment: 17 pages, 10 figures; v2: section 4 expanded, references added; v3: typos fixe

    Constraints on Brane Inflation and Cosmic Strings

    Full text link
    By considering simple, but representative, models of brane inflation from a single brane-antibrane pair in the slow roll regime, we provide constraints on the parameters of the theory imposed by measurements of the CMB anisotropies by WMAP including a cosmic string component. We find that inclusion of the string component is critical in constraining parameters. In the most general model studied, which includes an inflaton mass term, as well as the brane-antibrane attraction, values n_s < 1.02 are compatible with the data at 95 % confidence level. We are also able to constrain the volume of internal manifold (modulo factors dependent on the warp factor) and the value of the inflaton field to be less than 0.66M_P at horizon exit. We also investigate models with a mass term. These observational considerations suggest that such models have r < 2*10^-5, which can only be circumvented in the fast roll regime, or by increasing the number of antibranes. Such a value of r would not be detectable in CMB polarization experiment likely in the near future, but the B-mode signal from the cosmic strings could be detectable. We present forecasts of what a similar analysis using PLANCK data would yield and find that it should be possible to rule out G\mu > 6.5*10^-8 using just the TT, TE and EE power spectra.Comment: 11 pages, 3 figures, revtex4, typos corrected, references adde

    Current-carrying cosmic string loops 3D simulation: towards a reduction of the vorton excess problem

    Full text link
    The dynamical evolution of superconducting cosmic string loops with specific equations of state describing timelike and spacelike currents is studied numerically. This analysis extends previous work in two directions: first it shows results coming from a fully three dimensional simulation (as opposed to the two dimensional case already studied), and it now includes fermionic as well as bosonic currents. We confirm that in the case of bosonic currents, shocks are formed in the magnetic regime and kinks in the electric regime. For a loop endowed with a fermionic current with zero-mode carriers, we show that only kinks form along the string worldsheet, therefore making these loops slightly more stable against charge carrier radiation, the likely outcome of either shocks or kinks. All these combined effects tend to reduce the number density of stable loops and contribute to ease the vorton excess problem. As a bonus, these effects also may provide new ways of producing high energy cosmic rays.Comment: 11 pages, RevTeX 4 format, 8 figures, submitted to PR

    Equation of state of cosmic strings with fermionic current-carriers

    Get PDF
    The relevant characteristic features, including energy per unit length and tension, of a cosmic string carrying massless fermionic currents in the framework of the Witten model in the neutral limit are derived through quantization of the spinor fields along the string. The construction of a Fock space is performed by means of a separation between longitudinal modes and the so-called transverse zero energy solutions of the Dirac equation in the vortex. As a result, quantization leads to a set of naturally defined state parameters which are the number densities of particles and anti-particles trapped in the cosmic string. It is seen that the usual one-parameter formalism for describing the macroscopic dynamics of current-carrying vortices is not sufficient in the case of fermionic carriers.Comment: 30 pages, 15 figures, uses ReVTeX, equation of state corrected, comments and references added. Accepted for publication in Phys. Rev.

    Curvaton Dynamics in Brane-worlds

    Get PDF
    We study the curvaton dynamics in brane-world cosmologies. Assuming that the inflaton field survives without decay after the end of inflation, we apply the curvaton reheating mechanism to Randall-Sundrum and to its curvature corrections: Gauss-Bonnet, induced gravity and combined Gauss-Bonnet and induced gravity cosmological models. In the case of chaotic inflation and requiring suppression of possible short-wavelength generated gravitational waves, we constraint the parameters of a successful curvaton brane-world cosmological model. If density perturbations are also generated by the curvaton field then, the fundamental five-dimensional mass could be much lower than the Planck massComment: 47 pages, 1 figure, references added, to be published in JCA
    • …
    corecore