5,155 research outputs found

    Young people and ICT 2002: findings from a survey conducted in Autumn 2002

    Get PDF
    This report describes a survey that explored the attitudes and experiences of young people aged 5-18 and their parents, in relation to the use of information and communications technology (ICT) at home and at schoo

    Fractional Quantum Hall Physics in Jaynes-Cummings-Hubbard Lattices

    Get PDF
    Jaynes-Cummings-Hubbard arrays provide unique opportunities for quantum emulation as they exhibit convenient state preparation and measurement, and in-situ tuning of parameters. We show how to realise strongly correlated states of light in Jaynes-Cummings-Hubbard arrays under the introduction of an effective magnetic field. The effective field is realised by dynamic tuning of the cavity resonances. We demonstrate the existence of Fractional Quantum Hall states by com- puting topological invariants, phase transitions between topologically distinct states, and Laughlin wavefunction overlap.Comment: 5 pages, 3 figure

    Reply Comment: Comparison of Approaches to Classical Signature Change

    Full text link
    We contrast the two approaches to ``classical" signature change used by Hayward with the one used by us (Hellaby and Dray). There is (as yet) no rigorous derivation of appropriate distributional field equations. Hayward's distributional approach is based on a postulated modified form of the field equations. We make an alternative postulate. We point out an important difference between two possible philosophies of signature change --- ours is strictly classical, while Hayward's Lagrangian approach adopts what amounts to an imaginary proper ``time" on one side of the signature change, as is explicitly done in quantum cosmology. We also explain why we chose to use the Darmois-Israel type junction conditions, rather than the Lichnerowicz type junction conditions favoured by Hayward. We show that the difference in results is entirely explained by the difference in philosophy (imaginary versus real Euclidean ``time"), and not by the difference in approach to junction conditions (Lichnerowicz with specific coordinates versus Darmois with general coordinates).Comment: 10 pages, latex, no figures. Replying to - "Comment on `Failure of Standard Conservation Laws at a Classical Change of Signature'", S.A. Hayward, Phys. Rev. D52, 7331-7332 (1995) (gr-qc/9606045

    Supersolid phases of light in extended Jaynes-Cummings-Hubbard systems

    Get PDF
    Jaynes-Cummings-Hubbard lattices provide unique properties for the study of correlated phases as they exhibit convenient state preparation and measurement, as well as "in situ" tuning of parameters. We show how to realize charge density and supersolid phases in Jaynes-Cummings-Hubbard lattices in the presence of long-range interactions. The long-range interactions are realized by the consideration of Rydberg states in coupled atom-cavity systems and the introduction of additional capacitive couplings in quantum-electrodynamics circuits. We demonstrate the emergence of supersolid and checkerboard solid phases, for calculations which take into account nearest neighbour couplings, through a mean-field decoupling.Comment: 9 pages with 6 figures, accepted for publication in Physical Review

    Black holes, cosmological singularities and change of signature

    Get PDF
    There exists a widespread belief that signature type change could be used to avoid spacetime singularities. We show that signature change cannot be utilised to this end unless the Einstein equation is abandoned at the suface of signature type change. We also discuss how to solve the initial value problem and show to which extent smooth and discontinuous signature changing solutions are equivalent.Comment: 14pages, Latex, no figur
    corecore