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Supersolid phases of light in extended Jaynes-Cummings-Hubbard systems
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Jaynes-Cummings-Hubbard lattices provide unique properties for the study of correlated phases as they
exhibit convenient state preparation and measurement, as well as in situ tuning of parameters. We show how to
realize charge density and supersolid phases in Jaynes-Cummings-Hubbard lattices in the presence of long-range
interactions. The long-range interactions are realized by the consideration of Rydberg states in coupled atom-
cavity systems and the introduction of additional capacitive couplings in quantum-electrodynamics circuits. We
demonstrate the emergence of supersolid and checkerboard solid phases, for calculations which take into account
nearest-neighbor couplings, through a mean-field decoupling.
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I. INTRODUCTION

Systems in a supersolid phase possess a spontaneously
formed crystalline structure along with off-diagonal long-
range order which characterizes superfluidity. The investiga-
tion of supersolid phases in condensed-matter systems has
been a focus of research for more than half a century [1–5].
Until recently, this effort has primarily focused on the possible
realization of a supersolid phase in 4He [6–8], with the most
credible claim for observation [9] now being withdrawn [10].
The relatively recent realization of Bose-Einstein condensates,
such as 52Cr [11,12], 164Dy [13], and 168Er [14], composed
of atoms with large dipole moments [15], has provided an
alternative avenue to investigate supersolid phases in extended
Bose-Hubbard lattice models [16–21].

In this work, we investigate the emergence of charge
density wave and supersolid phases in Jaynes-Cummings-
Hubbard (JCH) lattices. Conventional JCH lattices consist of
an array of coupled cavities, with each cavity mode coupled
to a two-level system. A JCH system could be realized
in, for example, photonic band-gap structures [22,23] and
coupled-cavity waveguides [24,25], arrays of superconducting
strip-line cavities [26], or microcavities with individual cold
atoms connected via optical fiber interconnects [27–29]. To
date, JCH systems are predicted to exhibit a number of solid-
state phenomena such as superfluid and Mott-insulator phases
[22–24,30–33], the Josephson effect [34], metamaterial prop-
erties [35], Bose-glass phases [25], and fractional quantum
Hall physics [36]. The JCH model has recently been exper-
imentally realized for two sites using the internal and radial
phonon states of two trapped ions [37].

Through the inclusion of a long-range interaction between
the two-level systems, we show that it is possible for supersolid
phases to emerge in the JCH Hamiltonian. To enable the
long-range interaction, we consider two cases: (i) coupled
microcavities with a single atom in each cavity and (ii) arrays
of superconducting strip-line cavities. For microcavities, the
long-range interaction is achieved by accessing Rydberg states
inducing a dipole interaction between the atoms in each
cavity. For arrays of superconducting strip-line cavities, the
long-range interaction is mediated via capacitive couplings
within the circuit.

Previous work has shown that for a lattice of Rydberg
atoms within a single cavity, a supersolid phase can emerge,

where both superradiance and crystalline orders coexist [38].
In addition, driven coupled cavity systems are also predicted
to result in a supersolid phase [39].

In this paper, we initially (Sec. II) focus on coupling
to Rydberg states in a single cavity containing a single
atom, via a two-photon process. In Sec. III, we introduce
coupling between the atom cavities, mediated via both photon
tunneling between cavities and dipole-dipole interactions
between atoms. In Sec. IV, we then consider exact solutions for
a system of four coupled atom cavities, specifically focusing
on the role of nearest-neighbor interactions. We then consider,
in Sec. V, mean-field solutions, demonstrating the emergence
of checkerboard solid and supersolid phases in the presence of
nearest-neighbor interactions.

II. TWO-PHOTON COUPLING TO RYDBERG STATES
IN A SINGLE-ATOM CAVITY

Before considering a lattice, we focus on the properties of
a single site. To achieve long-range interactions in the coupled
atom-cavity system, we require the excited state of the atom
to have a significant dipole moment. A possible realization of
an atomic cavity that exhibits a dipole moment when excited
utilizes the Rydberg state of 87Rb atoms. The 5S1/2 ground state
|g〉 of the 87Rb atom, which has been placed inside the cavity, is
resonantly coupled to the Rydberg state |e〉 via a two-photon
process, by using the 5P3/2 state |i〉 as an intermediate step
[Fig. 1(a)]. By choosing appropriate detunings for the driving
fields, the intermediate state can be eliminated adiabatically
as there are only small changes in its population over time.
As schematically shown in Fig. 1(a), the transition from the
ground state |g〉 to intermediate state |i〉 of frequency ωgi

is driven by the nonresonant coupling of strength β to a
single quantized cavity mode of frequency ωa and photonic
annihilation operator â†, where the cavity mode is detuned
by � = ωa − ωgi . The remaining transition from |i〉 to |e〉
of frequency ωie is nonresonantly driven by a classical laser
field with frequency ωl and Rabi frequency �. Transferring
the interacting part of the Hamiltonian into the interaction
picture and applying the rotating wave approximation, the
Hamiltonian can be written in the following form (� = 1):

Ĥint
1 = −�|i〉〈i| + (βâ†|g〉〈i| + �|e〉〈i| + H.c.). (1)
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FIG. 1. (Color online) (a) Scheme of a photon cavity containing
a three-level atom. The ground state |g〉 is resonantly coupled to the
Rydberg state |e〉 via a two-photon process. First, the atom is excited
nonresonantly by a photon of the cavity mode with frequency ωa . The
transition to the Rydberg level happens by absorbing a photon from
a driving laser field with frequency ωl . (b) Block of four cavities and
with nearest-neighbor photon hopping κ (black lines) and nearest-
neighbor interactions V (blue lines).

For large detuning � compared to the lifetime of |i〉, the
intermediate state is weakly populated and can be eliminated
adiabatically. This leads to the effective Hamiltonian

Ĥeff = β̃(â†|g〉〈e| + â|e〉〈g|), (2)

where β̃ denotes the rescaled coupling strength between the
cavity mode and the atom. Thus the three-level atomic system
is approximated by a two-level system, with the excited state of
the atom exhibiting a significant dipole moment. For a detailed
description of the two-cavity system, including experimentally
accessible parameter regimes, see the work of Wu et al. [40].

An alternative system in which to realize the Jaynes-
Cummings-Hubbard model is circuit quantum electrodynam-
ics (cQED) [41–46]. In a typical QED circuit, the “atomic”
degree of freedom is realized via a Josephson-junction circuit
providing a nonlinear set of states, the lowest two of which
form an effective two-level system. The photonic degree of
freedom is formed from the quantized modes of a supercon-
ducting strip-line resonator. The resulting system Hamiltonian
takes on an equivalent form to that of Eq. (2). This system
provides several advantages, including strong atom-photon
coupling and ease of integration as the form of the effective
Hamiltonian can be tailored at the circuit design stage.

III. THE EXTENDED JAYNES-CUMMINGS-HUBBARD
MODEL

An array of coupled photon cavities that contain two-level
atoms can be described by the JCH model [22–24,47–49]. In
this paper, we extend the JCH to the case of Rydberg atoms
by including a dipole interaction term. In the grand canonical
ensemble, the Hamiltonian for this system is defined as

Ĥ = −κ
∑

〈i,j〉
â
†
i âj + β̃

∑

i

(â†
i σ̂i + âi σ̂

†
i ) +

∑

i

(
εn̂σ

i + ωn̂a
i

)

+ V

2

∑

i

∑

j �=i

n̂σ
i n̂σ

j

|ri − rj |3 − μ
∑

i

l̂i . (3)

The above Hamiltonian does not include dissipation, driving,
and other nonequilibrium effects, which will be present in

experiment; however, it does provide a simple equilibrium
model which can be used to investigate the possibility of
alternative phases in such systems. The first term describes the
hopping of photons between neighboring lattice sites i and j

with hopping amplitude κ , where â
†
i and âi are photon creation

and annihilation operators at lattice site i. The second term is
the on-site coupling between the photons and atoms for each
site i as in Eq. (2), where σ̂

†
i = |ei〉〈gi | and σ̂i = |gi〉〈ei | are

atomic raising and lowering operators on site i, respectively.
The next term defines the energy associated with the atomic
and photonic degrees of freedom on each site, where ε is
the energy of the Rydberg level and ω is the frequency of
the photon mode of the cavity. Here we define the atom
number operator n̂σ

i = σ̂
†
i σ̂i that counts the atoms in the excited

state and the photon number operator n̂a
i = â

†
i âi . The fourth

term is the dipole-dipole interaction between the atoms with
interaction strength V . It raises the total energy of the system if
atoms in two or more different cavities occupy excited states.
The JCH model does not conserve the number of photonic or
atomic excitations. However, the total number of excitations∑

i l̂i = ∑
i(n̂

σ
i + n̂a

i ) is conserved. The last term in Eq. (3)
specifies the total number of excitations in the system via the
chemical potential μ.

For the cQED case, arrays of coupled cavities can be fabri-
cated with either capacitive or inductive coupling linking the
resonators. This architecture provides an entirely equivalent
realization of the JCH model [26,50]. In principle, coupling
the “atoms” in a cQED system can be achieved via direct
qubit-qubit coupling [51] or via the inclusion of additional
components to provide an effective coupling term [52–56].
Although the exact functional form of the coupling will depend
strongly on the particular circuit realization, Fig. 2 provides a
schematic for two layers of a possible multiple-layer circuit.
Each layer in the circuit consists of a one-dimensional array
of Josephson-junction-based two-level systems coupled via

FIG. 2. (Color online) Schematic of a possible cQED realization
of the long-range JCH model. Here we show two layers (black and
red) of a multilayered circuit. In each layer, Josephson-junction-based
two-level systems are coupled via strip-line resonators and capacitors,
as denoted in the figure. Multiple layers of these one-dimensional
arrays are placed on top of each other to realize an effective two-
dimensional (2D) lattice.
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strip-line resonators and capacitors. In such a circuit, the pho-
tonic components of the JCH model are now microwave excita-
tions in the strip-line resonators and the long-range interactions
(in this case, nearest neighbor) arise from capacitive coupling
between adjacent Josephson-junction two-level systems. For
a multilayered system, capacitive coupling between strip-line
resonators in adjacent layers enables microwave excitations
to couple between layers. Additionally, capacitive coupling
between Josephson junctions in adjacent layers mediates a
long-range interaction between two-level systems. Multiple
layers where coupling between strip-lines and Josephson
junctions is only between adjacent layers and nearest neighbors
form an effective two-dimensional lattice. A useful variant is
to use “flux qubits” and LC resonators for the atomic and
photonic components, respectively, as this results in a smaller
circuit footprint [57,58].

For the coupled atom-cavity system, the dipole interactions
decay as |ri − rj |−3; see second-to-last term in Eq. (3). For
the cQED case, the exact parametrization of the long-range
interactions depends on the capacitive couplings between
qubits, with the exact coupling defined by the circuit geometry.
The aim of this work is to show that for either a coupled
atom-cavity system or the cQED case, extended interactions
will lead to alternative charge density wave and supersolid
phases. As such, we consider the simplest form of extended
interactions (nearest neighbor), with the resulting Hamiltonian

Ĥ = −κ
∑

〈i,j〉
â
†
i âj + β̃

∑

i

(â†
i σ̂i + âi σ̂

†
i ) +

∑

i

(
εn̂σ

i + ωn̂a
i

)

+ V

2

∑

〈i,j〉
n̂σ

i n̂σ
j − μ

∑

i

l̂i . (4)

IV. FOUR-SITE SOLUTIONS OF THE EXTENDED
JAYNES-CUMMINGS-HUBBARD MODEL

In Sec. V, we will consider mean-field solutions for
an infinite array of coupled atom cavities. The mean-field
approximation will be based on the coupling of a four-site
system to an infinite lattice. As such, before proceeding with
the mean-field coupling, we first consider the exact solutions
of a four-site system. The system under consideration is

schematically shown in Fig. 1(b), i.e., four atom cavities
in a square arrangement, with nearest-neighbor hopping
and nearest-neighbor interactions. For such a system, the
Hamiltonian is

Ĥ4 = −zκ̄(â†
1â2 + â

†
2â1 + â

†
2â3 + â

†
3â2

+ â
†
3â4 + â

†
4â3 + â

†
1â4 + â

†
4â1)

+
4∑

i=1

[−μ̄n̂a
i − (�̄ + μ̄)n̂σ

i + (σ̂ †
i âi + â†σ̂i)

]

+ zV̄
(
n̂σ

1 n̂σ
2 + n̂σ

2 n̂σ
3 + n̂σ

3 n̂σ
4 + n̂σ

4 n̂σ
1

)
, (5)

where z = 1 (z = 2) for fixed (periodic) boundary conditions.
In the above, we have introduced the following dimensionless
couplings: κ̄ = κ/β̃, μ̄ = (μ − ω)/β̃, �̄ = (ω − ε)/β̃, and
V̄ = V/(β̃l0), where l0 is the lattice unit length. Note that
switching between periodic and fixed boundary conditions can
be included by a trivial rescaling of κ and V .

To find the ground state of the four-site system, we evaluate
Eq. (5) in the following basis: {∏4

i=1 |na
i ,n

σ
i 〉; na

i ∈ N0,n
σ
i ∈

{0,1}}. Due to computational limitations, it is necessary to
restrict the possible basis states. In the following, a cutoff
defined by na

i + nσ
i � 5 was used on every site, which is more

than sufficient to demonstrate the fundamental ground-state
properties of the four-site system.

Figure 3 plots the number of excitations per site (n =
1
4

∑4
i=1〈l̂i〉), in the ground state, for the four-site system, with

periodic boundary conditions (z = 2) as a function of the
chemical-potential and photon-hopping strength, for various
strengths of nearest-neighbor interactions, with �̄ = 0. In the
absence of dipolar interactions (V̄ = 0), we observe a pinch
effect as κ → 0 between n = k and n = k + 1, where k =
1,2,3, . . ., i.e., all fractional occupations disappear as κ → 0,
consistent with previous results. This implies that in the limit
of no photon hopping between the cavities, the ground state is
defined by the number of excitations being an integer multiple
of the number of sites. As photon hopping is introduced, states
emerge with the number of excitations not being an integer
multiple of the number of sites. Introducing nearest-neighbor
interactions significantly changes the ground-state properties

FIG. 3. (Color online) Number of excitations per site, n = 1
4

∑4
i=1〈l̂i〉, in a system of four coupled atom cavities, with periodic boundary

conditions, as a function of the chemical potential μ̄ and the intercavity hopping κ̄ , for different values of the nearest-neighbor interaction V̄ ,
with �̄ = 0.
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of the system. Specifically, we see that as κ → 0, fractional
occupations do not disappear, i.e., for κ → 0, a state emerges
with n = 0.5. This corresponds to a checkerboard phase with
atomic excitations arranged on the diagonal to minimize
the nearest-neighbor interaction. As the strength of the
nearest-neighbor interaction increases, the chemical-potential
range over which this fractional state exists grows. For the
fractional n = 0.5 state, in the limit κ → 0, we find the the
atomic and photonic contributions to this state are equal, i.e.,∑4

i=1〈n̂σ
i 〉 = ∑4

i=1〈n̂a
i 〉 = 1. Additionally, for the n = 1 and

n = 2 states, the introduction of nearest-neighbor interactions
increases (decreases) the photonic (atomic) contributions to the
number of excitations per site. The emergence of the n = 0.5
checkerboard state corresponds to a checkerboard solid. The
increase (decrease) in the photonic (atomic) contributions to
the number of excitations per site (for n = 1 and n = 2) comes
from the energy cost of having atomic excitations in the system,
due to the nearest-neighbor interactions.

V. MEAN-FIELD SOLUTIONS OF THE EXTENDED
JAYNES-CUMMINGS-HUBBARD MODEL

For the case of vanishing long-range interaction (V̄ =
0), phase transitions between homogeneous superfluid and
homogeneous Mott-insulator phases [22–24,30,31] have been
predicted. To determine these phases, one approach is to
introduce a mean-field decoupling in the hopping term,
between the lattice sites. For a single-site decoupling, this
restricts the excitations to be homogeneously distributed.

Including the nearest-neighbor interactions (V̄ �= 0), we
expect a nonhomogeneous distribution of excitations due to the
energy cost of having more than one atom in the excited state
close to each other. To observe this in the mean-field model,
we allow the order parameters to vary across the system. For
interactions between nearest-neighbors only, variations of the
order parameter appear with a maximum period of two lattice
unit lengths. Thus it is sufficient to decouple the infinite square
lattice of cavities into periodical square blocks of four, as
depicted in Fig. 4. Tunneling (dashed lines) and long-range in-
teractions between blocks (dotted lines) are treated by a mean-
field approximation, i.e., operator products that connect two
blocks are approximated by ÂB̂ ≈ Â〈B̂〉 + 〈Â〉B̂ − 〈Â〉〈B̂〉.
Intrablock tunneling and long-range interactions (solid lines)
are kept to capture the significant effects of correlations
within the block. The approximated Hamiltonian can be
written as a sum of terms within the block and mean-field
terms connecting the block to the surrounding lattice sites,
Ĥ≈ Ĥ′ = Ĥ4 + ĤMF, where Ĥ4 is given by Eq. (5), with
z = 1, and ĤMF = Ĥ12

MF + Ĥ23
MF + Ĥ34

MF + Ĥ43
MF with

Ĥij

MF = −κ̄{(â†
i + âi)ψj + (â†

j + âj )ψi − 2ψiψj }
+ V̄ {n̂iξj + n̂j ξi − ξiξj }. (6)

Here we introduced the mean-field parameter of the atomic
excitation on each site ξi = 〈n̂σ

i 〉 and the real superfluid order
parameter ψi = 〈âi〉.

To find the ground state of Ĥ′, we calculate the order
parameters self-consistently, minimizing the total energy of
the system simultaneously. To avoid convergence problems,
due to degenerate ground states in a nonhomogeneous phase,

FIG. 4. (Color online) Scheme of the mean-field approximation
for a block of four cavities and nearest-neighbor interactions. The
intrablock hopping κ (black solid line) and nearest-neighbor dipole
interactions V (blue solid line) between neighboring cavities (black
circles) are treated identically. Interactions outside of the block are
decoupled by a mean-field approximation (black and blue dashed
lines).

the symmetry of the block is broken by introducing a random
energy shift of δi for each cavity. This energy shift [59], in
dimensionless units δ̄i = δi/β, is of the order of 10−6. As in
Sec. IV, the basis is restricted to na

i + nσ
i � 5 on each site.

The phase diagram for our system can be deduced from
Figs. 5 and 6. For V̄ = 0, we find the well-known result that
the parameter space is separated into two distinct phases. For
low hopping strength κ̄ , we find lobes of vanishing superfluid
order parameter, i.e., Mott-insulating phases as shown in
Fig. 6(a). Each lobe corresponds to a state with an integer
number of strongly localized excitations per site. This is shown
in Fig. 5, where we plot the mean number of excitations per
site in the Mott-insulator phase. For low chemical potential,
there are no excitations in the system. Raising the chemical
potential, the block is successively filled with one, two,
and more excitations per site. At sufficiently large κ̄ , the
system undergoes a phase transition into a phase of finite
superfluid order parameter [Fig. 6(a)]. The excitations are
homogeneously distributed and delocalized, i.e., the system
is in a superfluid state.

Consistent with the finite-size results (Fig. 3), Fig. 5 shows
that as V̄ is increased from zero, a phase emerges with n = 1/2
and a zero supersolid or superfluid component, corresponding
to two excitations per block. This corresponds to a checker-
board solid phase with excitations arranged on the diagonal to
minimize the nearest-neighbor interaction. As the strength of
the nearest-neighbor interactions are increased, the extent of
this checkerboard solid phase increases. Checkerboard solid
phases also appear at higher filling (n = 3

2 , n = 5
2 ). However,

for the values of V̄ considered, the extent of phases is very
small.
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FIG. 5. (Color online) Mean number of excitations per block of four cavities n = 1
4

∑4
i=1〈l̂i〉 within the Mott-insulator and checkerboard

phases, as a function of the chemical potential μ̄ and the intercavity hopping κ̄ , for different values of the nearest-neighbor
interaction V̄ , with �̄ = 0. In the white supersolid-superfluid (SS-SF) region, we find nonvanishing superfluid order parameters,
i.e.,

∑4
i=1 ψi > 0.

(a)

(b)

(c)

FIG. 6. (Color online) (a) The sum of the superfluid order pa-
rameters on each block � = ∑4

i=1 ψi as a function of the chemical
potential μ̄ and the intercavity hopping κ̄ for V̄ = 0.0. (b),(c)
�� = |ψ1 − ψ2|/|ψ1 + ψ2| as a function of the chemical potential
μ̄ and the intercavity hopping κ̄ for V̄ = 0.4 and 0.8. This normalized
difference between the order parameters indicates the presence of a
checkerboard supersolid (SS) phase.

Associated with the emergence of the checkerboard solid
phase is supersolid behavior. Supersolid regimes can be
characterized by identifying changes in the superfluid order
parameters within the block. In the absence of nearest-
neighbor interactions, ψ1 = ψ2 = ψ3 = ψ4. However, for
V̄ > 0, we find regimes where ψ1 = ψ3 and ψ2 = ψ4 but
ψ1 �= ψ2 corresponding to a supersolid phase. Figures 6(b)
and 6(c) identify the supersolid phase by plotting �� =
|ψ1 − ψ2|/|ψ1 + ψ2|, in the region where

∑4
i=1 ψi > 0. As

can be seen from Fig. 5, this supersolid phase is present at the
interface of the checkerboard solid phase and as κ̄ is increased,
it diminishes, until ψ1 = ψ2, characterizing a superfluid state.
As for the checkerboard solid phase, as V̄ is increased, the
extent of the supersolid phase increases.

Intrablock correlations play a crucial role in determining
the phase diagram in the extended JCH model. Introducing
mean-field decouplings within the block for the hopping and
nearest-neighbor interactions [first and last terms in Eq. (5)]
changes the phase diagram for V̄ �= 0. Decoupling results in a
decrease of the extent of the checkerboard solid and supersolid
phases. These shifts grow in significance when V̄ → 1. This
is in contrast to the case V̄ = 0 where the phase diagram
for a single-site decoupling [22–24,31] and the blockwise
decoupling does not differ significantly. Additionally, for
supersolid phases in the extended Bose-Hubbard model, it has
been found that quantum fluctuations can play a significant role
in determining stability [18]. As such, to test the robustness of
these mean-field calculations, quantum Monte Carlo methods
should be employed.

VI. CONCLUSIONS

The nature of the nearest-neighbor interaction in the JCH
model is qualitatively different from that found in other lattice
systems with long-range interactions, such as ultracold dipolar
gases in optical lattices, where the extended Bose-Hubbard
model is appropriate. Specifically, in the extended JCH model,
the interaction is mediated via a two-level system. Thus the
interaction depends on the simultaneous excitation of neigh-
boring atoms, which favors antiferromagnetic correlations
between the atomic states. Indeed, at κ = 0, the JCH system
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maps to a quantum Heisenberg model [24,60–62], in contrast
to the Bose-Hubbard case, which lies in the classical Ising
universality class.

We have demonstrated that the inclusion of long-range
interactions in the JCH model results in the emergence
of (i) noninteger Mott-insulator phases and (ii) supersolid
phases. In the absence of long-range interactions, the two-level
systems mediate an interaction between photons in the lattice.
The predicted Mott-insulator superfluid transition is a direct
consequence of this interaction. The addition of a direct
coupling between the two-level systems introduces charge
density and supersolid phases. Such an extended interaction
can be mediated in coupled atom-cavity systems through

the inclusion of Rydberg states and in cQED systems via
capacitive couplings between qubits. JCH systems provide an
alternative platform to investigate the emergence of supersolid
phases and novel correlated states of light.

Experimental realizations of the JCH model are subject to
loss mechanisms, which are not included in the above work.
As such, the analysis presented above is valid for regimes
where the quality factor of the cavities is large and the hopping
rates between the cavities dominates over absorption or loss
of photons out of the system. To study the robustness of the
charge density and supersolid phases for systems away from
this regime would require the inclusion of both driving and
dissipation in the Hamiltonian [63].
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