282,786 research outputs found

    Simultaneous QCD analysis of diffractive and inclusive DIS data

    Full text link
    We perform a NLO QCD analysis of deep-inelastic scattering data, in which we account for absorptive corrections. These corrections are determined from a simultaneous analysis of diffractive deep-inelastic data. The absorptive effects are found to enhance the size of the gluon distribution at small x, such that a negative input gluon distribution at Q^2 = 1 GeV^2 is no longer required. We discuss the problem that the gluon distribution is valence-like at low scales, whereas the sea quark distribution grows with decreasing x. Our study hints at the possible importance of power corrections for Q^2 \simeq 1--2 GeV^2.Comment: 11 pages, 3 figures. Version published as a Rapid Communication in Phys. Rev.

    Asymmetric soft-error resistant memory

    Get PDF
    A memory system is provided, of the type that includes an error-correcting circuit that detects and corrects, that more efficiently utilizes the capacity of a memory formed of groups of binary cells whose states can be inadvertently switched by ionizing radiation. Each memory cell has an asymmetric geometry, so that ionizing radiation causes a significantly greater probability of errors in one state than in the opposite state (e.g., an erroneous switch from '1' to '0' is far more likely than a switch from '0' to'1'. An asymmetric error correcting coding circuit can be used with the asymmetric memory cells, which requires fewer bits than an efficient symmetric error correcting code

    Spin Connection and Renormalization of Teleparallel Action

    Get PDF
    In general relativity, inertia and gravitation are both included in the Levi-Civita connection. As a consequence, the gravitational action, as well as the corresponding energy-momentum density, are in general contaminated by spurious contributions coming from inertial effects. In teleparallel gravity, on the other hand, because the spin connection represents inertial effects only, it is possible to separate inertia from gravitation. Relying on this property, it is shown that to each tetrad there is naturally associated a spin connection that locally removes the inertial effects from the action. The use of the appropriate spin connection can be viewed as a renormalization process in the sense that the computation of energy and momentum naturally yields the physically relevant values. A self-consistent method for solving field equations and determining the appropriate spin connection is presented.Comment: v2: 13 pages, minor corrections, new section about solving the field equations include

    The Frequency of Kozai–Lidov Disc Oscillation Driven Giant Outbursts in Be/X-Ray Binaries

    Full text link
    Giant outbursts of Be/X-ray binaries may occur when a Be-star disc undergoes strong eccentricity growth due to the Kozai–Lidov (KL) mechanism. The KL effect acts on a disc that is highly inclined to the binary orbital plane provided that the disc aspect ratio is sufficiently small. The eccentric disc overflows its Roche lobe and material flows from the Be star disc over to the companion neutron star causing X-ray activity. With N-body simulations and steady state decretion disc models we explore system parameters for which a disc in the Be/X-ray binary 4U 0115+634 is KL unstable and the resulting time-scale for the oscillations. We find good agreement between predictions of the model and the observed giant outburst time-scale provided that the disc is not completely destroyed by the outburst. This allows the outer disc to be replenished between outbursts and a sufficiently short KL oscillation time-scale. An initially eccentric disc has a shorter KL oscillation time-scale compared to an initially circular orbit disc. We suggest that the chaotic nature of the outbursts is caused by the sensitivity of the mechanism to the distribution of material within the disc. The outbursts continue provided that the Be star supplies material that is sufficiently misaligned to the binary orbital plane. We generalize our results to Be/X-ray binaries with varying orbital period and find that if the Be star disc is flared, it is more likely to be unstable to KL oscillations in a smaller orbital period binary, in agreement with observations

    Laws of large numbers and Langevin approximations for stochastic neural field equations

    Get PDF
    In this study we consider limit theorems for microscopic stochastic models of neural fields. We show that the Wilson-Cowan equation can be obtained as the limit in probability on compacts for a sequence of microscopic models when the number of neuron populations distributed in space and the number of neurons per population tend to infinity. Though the latter divergence is not necessary. This result also allows to obtain limits for qualitatively different stochastic convergence concepts, e.g., convergence in the mean. Further, we present a central limit theorem for the martingale part of the microscopic models which, suitably rescaled, converges to a centered Gaussian process with independent increments. These two results provide the basis for presenting the neural field Langevin equation, a stochastic differential equation taking values in a Hilbert space, which is the infinite-dimensional analogue of the Chemical Langevin Equation in the present setting. On a technical level we apply recently developed law of large numbers and central limit theorems for piecewise deterministic processes taking values in Hilbert spaces to a master equation formulation of stochastic neuronal network models. These theorems are valid for processes taking values in Hilbert spaces and by this are able to incorporate spatial structures of the underlying model.Comment: 38 page

    Type I Outbursts in Low-eccentricity Be/X-Ray Binaries

    Full text link
    Type I outbursts in Be/X-ray binaries are usually associated with the eccentricity of the binary orbit. The neutron star accretes gas from the outer parts of the decretion disk around the Be star at each periastron passage. However, this mechanism cannot explain type I outbursts that have been observed in nearly circular orbit Be/X-ray binaries. With hydrodynamical simulations and analytic estimates we find that in a circular orbit binary, a nearly coplanar disk around the Be star can become eccentric. The extreme mass ratio of the binary leads to the presence of the 3:1 Lindblad resonance inside the Be star disk and this drives eccentricity growth. Therefore the neutron star can capture material each time it approaches the disk apastron, on a timescale up to a few percent longer than the orbital period. We have found a new application of this mechanism that is able to explain the observed type I outbursts in low-eccentricity Be/X-ray binaries

    Nonlinear elliptic problems with dynamical boundary conditions of reactive and reactive-diffusive type

    Full text link
    We investigate classical solutions of nonlinear elliptic equations with two classes of dynamical boundary conditions, of reactive and reactive-diffusive type. In the latter case it is shown that well-posedness is to a large extent independent of the coupling with the elliptic equation. For both types of boundary conditions we consider blow-up, global existence, global attractors and convergence to single equilibria.Comment: 31 page
    corecore