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Abstract In general relativity, inertia and gravitation are
both included in the Levi–Civita connection. As a conse-
quence, the gravitational action, as well as the correspond-
ing energy–momentum density, are in general contaminated
by spurious contributions coming from inertial effects. In
teleparallel gravity, on the other hand, because the spin con-
nection represents inertial effects only, it is possible to sep-
arate inertia from gravitation. Relying on this property, it
is shown that to each tetrad there is naturally associated a
spin connection that locally removes the inertial effects from
the action. The use of the appropriate spin connection can
be viewed as a renormalization process in the sense that the
computation of energy and momentum naturally yields the
physically relevant values. A self-consistent method for solv-
ing field equations and determining the appropriate spin con-
nection is presented.

1 Introduction

The search for a local energy–momentum density for gravity
is one of the oldest problem of general relativity. Its difficulty
is usually understood to be a consequence of the equivalence
principle, which locally identifies inertial with gravitational
effects. To illustrate this point, let us consider two observers
in a gravitational field of some massive object: one is in free-
fall and the other is kept at a fixed distance from the object.
For the first observer gravity seems to be switched off, and
she/he naturally assigns a zero energy–momentum density to
the gravitational field. The other observer experiences a grav-
itational pull and assigns a non-zero energy–momentum den-
sity to the same gravitational field. This does not mean that it
is impossible to define unequivocally an energy–momentum
density for gravity. Rather, it means simply that, in order to
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define it, we must be able to separate inertial from gravita-
tional effects.

In the context of general relativity, both inertial and grav-
itational effects are encoded in the Levi–Civita connection,
and cannot be separated. For this reason, any complex defin-
ing the gravitational energy–momentum in this theory den-
sity will include the contribution coming from inertial effects
and will consequently be a non-covariant quantity – that is, a
pseudotensor [1]. An attempt to circumvent this problem is
the so-called quasi-local approach, in which one defines the
energy–momentum associated with a region of space–time
M with boundary ∂M. The full gravitational action in this
case is given by [2,3]1

◦
S(g) =

∫
M

◦
LEH +

∫
∂M

◦
LGHY, (1.1)

where
◦
LEH is the Einstein–Hilbert Lagrangian and

◦
LGHY is

the Gibbons–Hawking–York boundary term. The action (1.1)
was originally used in the framework of Euclidean gravity,
where many important results about black hole thermody-
namics were obtained [3]. It was then used in the Hamiltonian
formalism, where the role of boundary terms was investigated
[4,5], as well as in the quasi-local definition of gravitational
energy–momentum tensor [6].

The problem of the action (1.1) is that it suffers from IR-
divergences: it diverges when the boundary is taken to the
infinity. This happens even for a flat metric written in a gen-
eral coordinate system, in which case the action (1.1) repre-
sents inertial effects only. It is then clear that such divergences
need to be removed to yield physically sensible results. These
divergences are closely related to the problem of the asymp-
totic limit of the Lagrangian density: if the Lagrangian den-
sity does not vanish at infinity, we obtain a divergent action.
Notice, however, that, since any physical field must vanish

1 We denote all quantities related to general relativity with a “◦” over
the symbol.
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far enough away from the source, the purely gravitational
action is expect to be free of IR-divergences.

On the other hand, the energy associated to the inertial
effects does not vanish at infinity. This can be seen already
in classical Newtonian physics: if we consider an observer in
the gravitational field of some planet, and we allow such
observer to rotate (i.e. include some inertial effects), this
observer would measure that the planet has some rotational
energy in respect to him. As we increase a distance between
the observer and the planet, this energy would increase and
be unavoidably divergent. These results constitute clear evi-
dence that the inertial effects are responsible for the IR-
divergences of the action.

In general relativity, this problem is typically addressed
through the so-called “background subtraction” method, pro-
posed by Gibbons and Hawking [3], which considers a ref-
erence space–time Mref related to a flat metric gref , which is
isometrically embedded in the general space–time M. The
physically renormalized action is then defined as the differ-
ence
◦
Sren = ◦

S(g) − ◦
S(gref). (1.2)

The underlying idea is that the divergences are fully
encoded in the reference space–time Mref , and the subtrac-
tion (1.2) has the effect of removing all divergent contribu-
tions from the action. The action for the reference space–time
represents just inertial effects, since it is a flat space–time,
where gravity is absent. The subtraction (1.2) can thus be
understood as a removal of the inertial effects from the action.

In the Gibbons–Hawking renormalization process, the
divergences are removed only quasi-locally – that is to say,
are removed from the action as an integral over the whole
space–time. As a consequence, it is not always possible to
construct an open family of the embeddings of the reference
space–time around a given solution. For this reason, the vari-
ational principle associated to the renormalized gravitational
action (1.2) is not always well defined [7]. On the other hand,
owing to the fact that in teleparallel gravity [8] the spin con-
nection represents inertial effects only, it becomes possible
to locally separate inertial and gravitational effects – some-
thing impossible to achieve in general relativity. As a conse-
quence, one is able to locally remove the inertial effects from
the action, yielding in this way a purely gravitational action.
Of course, the same procedure can be used to locally remove
the inertial effects from the gravitational energy–momentum
density, which yields a local notion for energy and momen-
tum.

Working in the context of teleparallel gravity, the purpose
of this paper is to investigate the problem of defining a purely
gravitational action, to the exclusion of inertial effects, which
will be free of divergences. The corresponding gravitational
energy–momentum current will also be free of the spurious
inertial effects, and consequently will always yield the phys-

ical result. We are going to proceed as follows. In Sect. 2
we briefly introduce the fundamentals of teleparallel gravity.
In Sect. 3 we review the local Lorentz invariance of telepar-
allel gravity, and introduce the teleparallel spin connection.
We then show that to each tetrad there is naturally associ-
ated a spin connection. A method for retrieving such a spin
connection from the tetrad is provided, which can be con-
sidered the main result of the paper. In Sect. 4, using such
a method, we develop a self-consistent approach for solving
the field equations of teleparallel gravity. In Sect. 5 we show
that associating the appropriate spin connection to a given
tetrad removes the inertial effects from the action. Finding
the appropriate spin connection, therefore, can be viewed as
a renormalization process. We illustrate this property for the
cases of Schwarzschild and Kerr solutions. In Sect. 6, for
the sake of comparison, we briefly comment on the so-called
pure tetrad teleparallel gravity, and finally in Sect. 7 we sum-
marize and discuss the results obtained.

2 Fundamentals of teleparallel gravity

From now on, we will use the Greek alphabet (μ, ν, ρ . . .) to
denote space–time indices and the Latin alphabet (a, b, c, . . .)
to denote tangent-space indices. At every point of space–
time, the tetrad defines a vector basis for the corresponding
Minkowski tangent space. From a physical viewpoint, the
tetrad haμ represents a local frame of reference and is related
to the space–time metric by

gμν = ηabh
a
μh

b
ν, (2.1)

where ηab = diag(1,−1,−1,−1) is the Minkowski metric
of the tangent space.

From a physical viewpoint, there are two spin connec-
tions of special interest. The Levi–Civita spin connection
◦
ωa

bμ, which is the relevant connection of general relativity, is
the unique connection with vanishing torsion. Analogously,
there is a unique connection with vanishing curvature: it is

the so-called Weitzenböck connection
•
ωa

bμ, the relevant con-
nection of the teleparallel equivalent of general relativity,
or teleparallel gravity for short.2 These two connections are
related by the Ricci theorem [9],

•
ωa

bμ = ◦
ωa

bμ + •
Ka

bμ, (2.2)

where

•
Ka

bμ = 1

2
(

•
T a

μ b + •
T a
b μ − •

T a
bμ) (2.3)

is the contortion tensor and
•
T

ρ
μν is the torsion tensor.

2 We denote all quantities related to teleparallel gravity with a “•” over
the quantity.
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The Lagrangian of teleparallel gravity is then written in
the form [8]

•
L = h

4κ

•
T α

ρσ

•
S ρσ

α , (2.4)

where h = det haμ, κ = 8πG is the gravitational constant,
and
•
Sρμν = −•

Sρνμ = •
Kμνρ − gρν

•
Tμ + gρμ

•
T ν (2.5)

is the superpotential, with
•
Tμ = •

T νμ
ν the vector torsion.

Using Ricci’s theorem (2.2), it is straightforward to show that
the teleparallel Lagrangian (2.4) differs from the Einstein–
Hilbert Lagrangian of general relativity by a total divergence:

•
L = ◦

LEH − ∂μ

(
h

κ

•
Tμ

)
. (2.6)

The teleparallel equations of motion are obtained by vary-
ing the Lagrangian (2.4) with respect to the tetrad h μ

a . In
vacuum, we find that the space–time-indexed equations are
given by

∂σ (h
•
S ρσ

μ ) + κh
•
t ρ
μ = 0, (2.7)

where

h
•
t ρ
μ = 1

κ
h

•
�

α
σμ

•
S σρ

α + δ ρ
μ

•
L, (2.8)

is the energy–momentum pseudotensor, and
•
�α

σμ is the linear
connection
•
�

ρ
νμ = h ρ

a ∂μh
a
ν + h ρ

a
•
ωa

bμh
b
ν . (2.9)

Of course, on account of the equivalence between the
Lagrangians, the teleparallel field equations are found to be
equivalent to the Einstein equations:

∂σ (h
•
S ρσ

μ ) + κh
•
t ρ
μ ≡ h

( ◦
R ρ

μ − 1

2
δρ
μ

◦
R

)
. (2.10)

Since the Ricci tensor is symmetric, the expression on the
left side of (2.10) must be symmetric too. As a consequence,
we have only ten independent field equations.

Due to the anti-symmetry of the superpotential (2.5) in
the last two indices, it follows that the energy–momentum
pseudotensor is conserved in the ordinary sense

∂ρ(h
•
t ρ
μ ) = 0. (2.11)

As is well known, such conservation law yields a con-
served charge – that is, a time-conserved quantity. Let us
consider a spacelike slice 
 with uμ a timelike unit vector
normal to 
. Using polar coordinates (r, θ, φ) on 
, and
denoting the unit vector that is normal to the surface of con-
stant radial distance by nμ, the conserved charge is found to
be the four-momentum

Pμ =
∫




d3x(huν

•
t ν
μ ) = − 1

κ

∫
∂


dφdθ(huνnρ

•
S νρ

μ ),

(2.12)

where we have used Stokes’ theorem and the equations of
motion (2.7) in the second equality.

3 Local Lorentz transformations and spin connections

A local Lorentz transformation is a transformation of the
tangent-space coordinates

x ′a = �a
bx

b, (3.1)

where �a
b = �a

b(x) are point-dependent elements of the
Lorentz group. Under such transformation the tetrad changes
according to

h′a
μ = �a

bh
b
μ, (3.2)

whereas the spin connection undergoes the transformation

ω′a
bμ = �a

cω
c
dμ� d

b + �a
c∂μ�b

c, (3.3)

with �b
d the inverse matrix to �b

d . A local Lorentz trans-
formation, therefore, amounts to simultaneously transform
the tetrad (3.2) and the spin connection (3.3).

The spin connection of general relativity represents both
gravitation and inertial effects. On the other hand, the spin
connection of teleparallel gravity represents inertial effects
only. This means that there exists a class of frames – called

proper frames – in which it vanishes:
•
ωa

bμ = 0. In a general
class of frames, therefore, according to the transformation
(3.3), it will assume the form [8]

•
ωa

bμ = �a
c ∂μ�b

c. (3.4)

This expression can also be obtained by considering
teleparallel gravity as “embedded” in more general gauge
theories, like for example the metric-affine theory [10] or the
Poincaré gauge theory [11]. Starting with such general theo-
ries, and introducing via Lagrange multipliers the condition
of vanishing curvature and non-metricity in the former case,
and the condition of vanishing curvature in the later case, one
ends up again with the inertial connection (3.4).

As a gauge theory for the translational group [14], the
tetrad in teleparallel gravity has always the form [8]

haμ = ∂μx
a + •

ωa
bμx

b + Ba
μ. (3.5)

Now, the teleparallel field equations are concerned with
gravity only: they determine the gravitational potential Ba

μ

only. In other words, the teleparallel spin connection is
not determined by the field equations. This means that the
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teleparallel field equations are able to determine the tetrad
up to a local Lorentz transformation [13].3

Then comes the problem: any real computation presup-
poses a given frame, or tetrad. If this tetrad represents a proper
frame, the associated spin connection vanishes: {h̃aμ, 0}. In
any other class of frames related to the proper frames by
a local Lorentz transformation, the spin connection will be
non-vanishing, which means that there are infinitely many

pairs {haμ,
•
ωa

bμ}. Of course, for consistency reasons, the
same spin connection must be used in all covariant deriva-
tives. Therefore, we need to provide a mechanism to deter-
mine the spin connection associated to a given tetrad.

To begin with, we note that the tetrad (3.5) satisfies the

teleparallel field equations for any spin connection
•
ωa

bμ.
Therefore, any given tetrad will also be a solution to the
field equations.4 Our main task is then to retrieve the spin
connection from the tetrad. We start by considering a “refer-
ence tetrad” h a

(r)μ, in which gravity is switched off. In such
tetrad, the translational potential Ba

μ vanishes and the refer-
ence tetrad can be written as

h a
(r)μ = ∂μx

a + •
ωa

bμx
b. (3.6)

Substituting the decomposition (3.6) into the definition of
the torsion tensor, it is easy to check that the torsion tensor
for the reference tetrad vanishes identically

•
T a

μν(h
a
(r)μ,

•
ωa

bμ) = 0. (3.7)

As we have said, the decomposition (3.5) is always
implicit, and hence we do not immediately know how to set
Ba

μ equal to zero. However, given a general tetrad haμ, we
can obtain the reference tetrad in which gravity is switched
off by setting some parameter that controls a strength of grav-
ity to zero. The obvious choice is the gravitational constant
G. Hence, in practice, the reference tetrad is obtained as

h a
(r)μ ≡ haμ

∣∣
G→0

. (3.8)

We define the coefficient of anholonomy f cab of the tetrad
ha = haμdxμ as

[ha, hb] = f cab hc. (3.9)

As a simple computation shows, its explicit form is

f cab = ha
μhb

ν(∂νh
c
μ − ∂μh

c
ν). (3.10)

In terms of f cab, torsion can be written as

•
T a

bc = − f abc + (
•
ωa

cb − •
ωa

bc). (3.11)

3 Recall that in the tetrad formulation of general relativity, the Einstein
equation determines the tetrad up to a local Lorentz transformation [12].
Due to the equivalence (2.10) between the field equations, it is natural
to expect that the same holds in teleparallel gravity.
4 In Sect. 4 we discuss in detail how to solve the teleparallel field
equations.

Condition (3.7) for the reference tetrad assumes then the
form
•
T a

bc(h
a
(r)μ,

•
ωa

bμ) = •
ωa

cb − •
ωa

bc − f abc(h(r)) = 0,

(3.12)

with f abc(h(r)) the coefficient of anholonomy (3.10) of the
reference tetrad h a

(r)μ. Using (3.12) for three different com-
bination of indices, we can solve for the spin connection:

•
ωa

bμ = 1

2
h c

(r)μ[ fbac(h(r)) + fc
a
b(h(r)) − f abc(h(r))].

(3.13)

This is the teleparallel spin connection naturally associ-
ated to the reference tetrad h a

(r)μ. Since the reference tetrad
h a

(r)μ and the original tetrad haμ differs only in their gravita-
tional content, while the inertial effects are equally present
in both of them, the spin connection (3.13) is the teleparallel
spin connection naturally associated with the tetrad haμ as
well.

One should note that the inertial spin connection (3.13)
coincides with the Levi–Civita connection for the reference
tetrad
•
ωa

bμ = ◦
ωa

bμ(h(r)). (3.14)

Owing to this relation, our method is found to lead to the
same results as the one of Refs. [13,15], where the authors
used the asymptotic limit of the Levi–Civita connection. In
the case of asymptotically flat space–times, it is obvious that
such an approach defines a flat connection, but it is rather ad
hoc. Here, we have developed a completely new approach
to this problem, which gives rise to a whole new method of
eliminating the spurious contribution from inertial effects. It
should be noted that, in spite of the relation (3.14), our method
is conceptually independent of the Levi–Civita connection –
and consequently of general relativity.

4 A note on solution of the field equations

Let us briefly discuss the problem of solving the teleparallel
field equations. A simple analysis shows that the problem is
defined circularly: the spin connection is determined using
(3.13), which requires the reference tetrad obtained from the
solution of the field equations (3.8). However, the field equa-
tions require the knowledge of torsion, which is a function
of both tetrad and spin connection. We now explain how to
avoid this difficulty and provide a self-consistent method to
solve field equations in the framework of teleparallel gravity.

It is important to understand that the starting point of any
calculation is the ansatz tetrad, which is chosen in such a
way that it reproduces the ansatz metric, which is in turn
given by the symmetry of the problem under consideration.
This choice is non-unique in the sense that there are infinitely
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many tetrads leading to the same metric, all of them related
by local Lorentz transformations. In practice, we choose the
simplest tetrad. For example, in the case of spherical static
space–time, the most natural choice is the diagonal tetrad
in the spherical coordinate system. So far, the situation is
similar to the tetrad formulation of general relativity.

In general relativity, the Levi–Civita spin connection is
fully determined by the tetrad, which allows us to solve
Einstein equations using an ansatz tetrad only. However, in
teleparallel gravity, the spin connection is needed as well to
find torsion and solve the field equations. The key observa-
tion here is that the field equations do not depend on the
spin connection, as discussed in the previous section. This
allows us to solve the field equations using an arbitrary spin
connection of the form (3.4). The most natural choice is to
consider a vanishing spin connection, which is trivially of the
right form, (3.4) – but in principle any other spin connection
of this form could be chosen. Using this property, we deter-
mine the tetrad from the field equations, and we can then
proceed to find the associated spin connection using (3.8)
and (3.13).

The method described here allows us to solve the field
equations and determine the spin connection in a self-
consistent way. Alternatively, it is possible to use the equiv-
alence with general relativity (2.10), and calculate the spin
connection associated to the tetrad – which is already known
to solve Einstein equations. In Sect. 5 we illustrate the use of
both methods in the case of the Schwarzchild solution.

5 Renormalization of the action and energy–momentum

We have shown that in teleparallel gravity, to each tetrad
there is naturally associated a corresponding spin connec-
tion. Then we have developed a method to retrieve this spin
connection from the tetrad. Now, we would like to show that
from a physical viewpoint the role of the spin connection is
to remove the inertial effects from the action, providing in
this way a purely gravitational action which, as discussed in
the Introduction, is expected to be finite.

We start by considering an action for the reference tetrad
(3.8), which represents only inertial effects. If we naively
associate a vanishing spin connection to the reference tetrad
h a

(r)μ, the gravitational action assumes the form

•
S(h a

(r)μ, 0) =
∫
M

•
L(h a

(r)μ, 0). (5.1)

In general this action does not vanish, and it is even typi-
cally divergent. The reason for this result is that it is an action
for inertial effects. If instead of a vanishing spin connection
we choose the appropriate spin connection (3.13), due to (3.7)
we have

•
S(h a

(r)μ,
•
ωa

bμ) = 0. (5.2)

We see in this way that the role of spin connection
•
ωa

bμ is
to remove all inertial effects of the action, in such a way that it
now vanishes – as it should because it represents only inertial
effects. One should note that the spin connection removes the
inertial effects not from the whole action integral (5.2), but
locally at each point of the space–time. This is clear from the
fact that, not only the action, but also the Lagrangian itself

vanishes:
•
L(h a

(r)μ,
•
ωa

bμ) = 0.
From the viewpoint of inertial effects, the full and refer-

ence tetrads are equivalent. This means that the spin connec-
tion is able to remove the inertial contributions from the full
action as well. This yields an action that represents gravita-
tional effects only. Since the inertial effects are responsible
for causing the divergences, the purely gravitational action

•
Sren =

∫
M

•
L(haμ,

•
ωa

bμ), (5.3)

can be viewed as a renormalized action. The process of find-
ing the appropriate spin connection to a given tetrad can thus
be viewed as a renormalization process. Conceptually, this
resembles the Gibbons–Hawking renormalization method
that we have discussed in the Introduction. However, one
should note that the inertial effects are removed locally at
each point of space–time – and not from the whole integral,
as it happens in the Gibbons–Hawking formalism. As a con-
sequence, instead of quasi-local, the energy and momentum
densities in teleparallel gravity can be defined locally.

In what follows we illustrate our method of computing
the appropriate spin connection and demonstrate its effect
on action and energy–momentum density in two cases: the
Schwarzschild and the Kerr solutions.

5.1 Schwarzschild solution

The simplest non-trivial example of the gravitational field
is the spherically symmetric Schwarzschild solution, whose
metric has the form

ds2 = f (r)dt2 − 1

f (r)
dr2 − r2d�2. (5.4)

As is well known, there are infinitely many tetrads that
yield the above metric. As an example, let us consider diag-
onal tetrad

haμ = diag(
√

f (r), 1/
√

f (r), r, r sin θ). (5.5)

To find a solution for the function f (r), we can proceed in
two different ways. First, we can refer to the result of general
relativity, where

f (r) = 1 − 2m/r, (5.6)
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with m = GM is well known. However, it is equally possible
to obtain this solution in the framework of teleparallel gravity
following the method described in Sect. 4. We can set the
spin connection to zero, and solve the field equations for
the diagonal tetrad (5.5), which leads to the solution (5.6)
[16]. But we can check that this zero spin connection is not a
correct inertial spin connection associated with the diagonal
tetrad (5.5), since the teleparallel action is given by

•
S(haμ, 0) = 1

κ

∫
M

d4x sin θ. (5.7)

As a simple inspection shows, it is divergent, which means
inertial effects are still included in this action, and hence they
were not removed by the spin connection. We then use the
method developed in this paper to find the spin connection
associated to the tetrad (5.5). The starting point is to define
the reference tetrad

h a
(r)μ ≡ haμ

∣∣
G=0

= diag(1, 1, r, r sin θ). (5.8)

Using (3.13), we find that the non-vanishing components
of the spin connection are

•
ω1̂

2̂θ
= − •

ω2̂
1̂θ

= −1,
•
ω1̂

3̂φ
= − •

ω3̂
1̂φ

= − sin θ,

•
ω2̂

3̂φ
= − •

ω3̂
2̂φ

= − cos θ. (5.9)

The corresponding renormalized action is found to be

•
Sren(h

a
μ,

•
ωa

bμ) = 2

κ

∫
M

d4x

[
1 + (m − r)

r
√

f

]
sin θ

=
∫

dtM. (5.10)

As expected, it is finite and free of divergences. Using (2.12)
we can check that the energy–momentum density is

Pμ = (M, 0, 0, 0), (5.11)

which is the physically relevant result. We can see that the
renormalized action (5.10) can then directly be interpreted as
a time integral of the total energy of the Schwarzchild black
hole.

5.2 Kerr solution

In Boyer–Lindquist coordinates r, θ, φ, the Kerr metric is
written as

ds2 = dt2 − 
2

�
dr2 − (r2 + a2) sin2 θ dφ2 − 
2 dθ2

−2Mr


2 (dt − a sin2 θ dφ)2, (5.12)

where


 = r2 + a2 cos2 θ and � = r2 + a2 − 2mr,

with a the angular momentum per unity mass. A particular
tetrad yielding this metric is [15]

haμ =

⎛
⎜⎜⎜⎜⎜⎝

√
�

A 0 0 0

0
√



�

0

0 0
√


 0

− 2amr
A
√



sin θ 0 0 A√



sin θ

⎞
⎟⎟⎟⎟⎟⎠

, (5.13)

where

A2 = �
 + 2mr(r2 + a2). (5.14)

Similarly as in the Schwarzchild case, we can write naively
the action
•
S(haμ, 0)

= 1

κ

∫
M

d4x
r4 + a2 cos2 θ(4Mr + a2 cos2 θ)


2 sin θ.

(5.15)

To demonstrate that this quantity is divergent, we find that
the asymptotic expansion of the Lagrangian is

•
L(haμ, 0) = 1

κ
sin θ + O

(
1

r2

)
. (5.16)

Since the leading term in expansion is constant, the action
integral (5.15) is consequently IR-divergent. Our task now is
to find the spin connection associated with the above tetrad
that renormalizes the action. To this end, we define first
the reference tetrad according to (3.8), and then by using
Eq. (3.13) we find the non-vanishing components of the spin
connection:

•
ω1̂

2̂r
= − •

ω2̂
1̂r

= −a2 cos θ sin θ√
r2 + a2 


,
•
ω1̂

2̂θ
= − •

ω2̂
1̂θ

= −r
√
r2 + a2



,

•
ω1̂

3̂φ
= − •

ω3̂
1̂φ

= −r sin θ√



,
•
ω2̂

3̂φ
= − •

ω3̂
2̂φ

= −
√
r2 + a2 cos θ√



. (5.17)

The explicit expression for the renormalized action is too
lengthy to be written here, but we can find the leading term
in an asymptotic expansion of the Lagrangian:

•
L(haμ,

•
ωa

bμ) = −m2

κ

sin θ

r2 + O

(
1

r3

)
. (5.18)

Since the Lagrangian vanishes in the limit r → ∞, we
see that the action integral constructed out of the renor-
malized action is free of IR-divergences. The corresponding
non-vanishing components of the superpotential in the limit
r → ∞ are
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hS tr
t = −hS rt

t = 2M sin θ,

hS tr
φ = −hS rt

φ = −3aM sin3 θ, (5.19)

which automatically lead to the physical energy–momentum
four-vector,

Pμ = (M, 0, 0,−aM). (5.20)

6 Some comments on the pure tetrad teleparallel gravity

Let us mention here that there exists another approach to
teleparallel gravity that can be considered to be a different
theory called pure tetrad teleparallel gravity, obtained by
replacing torsion with the coefficient of anholonomy [17,18].
Its name stems from the fact that the only variable in this
theory is the tetrad, with the spin connection set to zero in
all reference frames. There is a problem with this procedure
though. The point is that, as can be seen from the decompo-
sition (3.5), a spin connection is always hidden in the tetrad,
which is usually overlooked in this theory. In fact, the spin
connection is usually set to zero in all covariant derivatives,
but not in the tetrad. Among other consequences, this proce-
dure leads to the breaking of local Lorentz symmetry.

To understand the relation with the covariant formulation
of teleparallel gravity used in this paper, we can recall that in
Sect. 4, we have used the vanishing spin connection to solve
the field equations. However, in our theory this was just a
necessary mid-step, and then the appropriate spin connec-
tion was calculated. It is important to mention that for some
applications, like the determination of the metric tensor, this
can be sufficient, since the metric tensor is independent from
the spin connection.

As an additional comment, let us mention that in our nota-
tion the gravitational action of pure tetrad teleparallel grav-

ity is written as
•
S(haμ, 0). Since inertial effects were not

entirely removed in the sense that the spin connection inside
the tetrad has not been set to zero, such action thus rep-
resent both gravitational and inertial effects. Consequently,
the energy–momentum derived from it is contaminated by
inertial effects, and hence is in general divergent. A regular-
ization process using the reference tetrads has already been
developed [19,20], which yields physically sensible results.
However, unlike our method, the divergences are removed
only quasi-locally.

7 Summary and conclusions

In general relativity, inertial and gravitational effects are both
included in the Levi–Civita connection, and cannot be sep-
arated. This means that the gravitational action necessarily
includes both gravitational and inertial effects. This is clear

from the fact that the action
◦
S(g) is non-zero in Minkowski

space–time, where gravity is absent. Of course, any com-
plex describing the energy–momentum density in this theory
will also include, in addition to the contribution coming from
gravitation itself, also the contribution coming from the iner-
tial effects. It is then necessary to use a renormalization pro-
cess to remove the inertial effects from the theory. An exam-
ple of such process is the background subtraction method
that removes all inertial effects from the gravitational action.
Using this action one can obtain the renormalized energy–
momentum density of gravitation, to the exclusion of inertial
effects. One should note that in the context of general rel-
ativity this procedure is not free of problems. For example,
the divergences are not removed locally from the action, but
as an integral over the whole space–time. As a consequence,
the variational principle is not in general well defined.

On the other hand, since in teleparallel gravity it is possi-
ble to separate inertial from gravitational effects, it turns out
possible to remove the spurious inertial contributions from
the theory. From a conceptual point of view, one can under-
stand this in the following way. The basic variables in this
theory are the tetrad, in which both gravitational and inertial
effects appear mixed, and the spin connection, which repre-
sents only inertial effects. The crucial point is to note that
the inertial effects present in any tetrad is fully determined
by the teleparallel spin connection. This means that to each
tetrad there is naturally associated a specific spin connection.
In this paper we have provided a method for retrieving the
appropriate spin connection from any tetrad.

From the viewpoint of the action, what happens is that the
teleparallel action, like in the general relativity case, repre-
sents both inertia and gravitation. However, if the spin con-
nection is appropriately chosen according to our method, the
inertial contents of the tetrad are exactly canceled by the spin
connection, giving rise to an action that represents only grav-
itational effects. Accordingly, the computation of the gravi-
tational energy–momentum density will automatically yield
the renormalized, physically relevant result. While concep-
tually our method bears some resemblance to the one by
Gibbons–Hawking, or those obtained in the context of pure
tetrad theory, there is an important difference: in the telepar-
allel method presented here the divergences coming from the
inertial effects are removed locally at each point of space–
time – and not quasi-locally. As a consequence, the varia-
tional principle in the teleparallel case remains always well
defined.

Let us conclude with the remark that our method cannot
be applied straightforwardly in the presence of a cosmolog-
ical constant. This is due to the fact that the reference tetrad
is defined by setting the gravitational constant to zero (see
Eq. (3.8)), but this does not switch-off the effect of the cos-
mological constant, which has a divergent contribution to the
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action on its own. However, preliminary results show that it
is possible to modify our method to address the problem of
a cosmological constant as well [21].
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