7,793 research outputs found

    Proposal for Higgs and Superpartner Searches at the LHCb Experiment

    Full text link
    The spectrum of supersymmetric theories with R-parity violation are much more weakly constrained than that of supersymmetric theories with a stable neutralino. We investigate the signatures of supersymmetry at the LHCb experiment in the region of parameter space where the neutralino decay leaves a displaced vertex. We find sensitivity to squark production up to squark masses of order 1 TeV. We note that if the Higgs decays to neutralinos in this scenario, LHCb should see the lightest Higgs boson before ATLAS and CMS.Comment: 7 pages, 5 figure

    A Perturbative Calculation of the Electromagnetic Form Factors of the Deuteron

    Get PDF
    Making use of the effective field theory expansion recently developed by the authors, we compute the electromagnetic form factors of the deuteron analytically to next-to-leading order (NLO). The computation is rather simple, and involves calculating several Feynman diagrams, using dimensional regularization. The results agree well with data and indicate that the expansion is converging. They do not suffer from any ambiguities arising from off-shell versus on-shell amplitudes.Comment: 22 pages, 8 figures. Discussion of effective range theory added, typos correcte

    Optical Nonlinearities at the Interface between Glass and Liquid Crystal

    Get PDF
    In this paper, the optical behavior of a nonlinear interface is studied. The nonlinear medium has been a nematic liquid crystal, namely MBBA, and the nonlinear one, glasses of different types (F-10 and F-2) depending on the experimental needs. The anchoring forces at the boundary have been found to inhibit the action of the evanescent field in the case of total internal reflection. Most of observed nonlinearities are due to thermal effects. As a consequence, liquid crystals do not seem to be good candidates for total internal reflection optical bistability

    Minimal Gaugino Mediation

    Get PDF
    We propose Minimal Gaugino Mediation as the simplest known solution to the supersymmetric flavor and CP problems. The framework predicts a very minimal structure for the soft parameters at ultra-high energies: gaugino masses are unified and non-vanishing whereas all other soft supersymmetry breaking parameters vanish. We show that this boundary condition naturally arises from a small extra dimension and present a complete model which includes a new extra-dimensional solution to the mu problem. We briefly discuss the predicted superpartner spectrum as a function of the two parameters of the model. The commonly ignored renormalization group evolution above the GUT scale is crucial to the viability of Minimal Gaugino Mediation but does not introduce new model dependence.Comment: LaTeX, 16 pages, 4 figures, running of the bottom and tau Yukawas included, plots revise

    The Simplest Little Higgs

    Full text link
    We show that the SU(3) little Higgs model has a region of parameter space in which electroweak symmetry breaking is natural and in which corrections to precision electroweak observables are sufficiently small. The model is anomaly free, generates a Higgs mass near 150 GeV, and predicts new gauge bosons and fermions at 1 TeV.Comment: 13 pages + appendix, typos corrected, version to appear in JHE

    Chandra Phase-Resolved X-ray Spectroscopy of the Crab Pulsar II

    Full text link
    We present a new study of the X-ray spectral properties of the Crab Pulsar. The superb angular resolution of the Chandra X-ray Observatory enables distinguishing the pulsar from the surrounding nebulosity. Analysis of the spectrum as a function of pulse phase allows the least-biased measure of interstellar X-ray extinction due primarily to photoelectric absorption and secondarily to scattering by dust grains in the direction of the Crab Nebula. We modify previous findings that the line-of-sight to the Crab is under-abundant in oxygen and provide measurements with improved accuracy and less bias. Using the abundances and cross sections from Wilms, Allen & McCray (2000) we find [O/H] = (5.28±0.28)×104(5.28 \pm 0.28)\times10^{-4} (4.9×1044.9 \times10^{-4} is solar abundance). We also measure for the first time the impact of scattering of flux out of the image by interstellar grains. We find τscat=0.147±0.043\tau_{\rm scat} = 0.147 \pm 0.043. Analysis of the spectrum as a function of pulse phase also measures the X-ray spectral index even at pulse minimum --- albeit with increasing statistical uncertainty. The spectral variations are, by and large, consistent with a sinusoidal variation. The only significant variation from the sinusoid occurs over the same phase range as some rather abrupt behavior in the optical polarization magnitude and position angle. We compare these spectral variations to those observed in Gamma-rays and conclude that our measurements are both a challenge and a guide to future modeling and will thus eventually help us understand pair cascade processes in pulsar magnetospheres. The data were also used to set new, and less biased, upper limits to the surface temperature of the neutron star for different models of the neutron star atmosphere.Comment: 32 pages, 6 figures submitted to the Astrophysical journa

    Supersymmetric Model of Muon Anomalous Magnetic Moment and Neutrino Masses

    Get PDF
    We propose the novel lepton-number relationship Lτ=Le+LμL_\tau = L_e + L_\mu, which is uniquely realized by the interaction (ν^eμ^e^ν^μ)τ^c(\hat \nu_e \hat \mu - \hat e \hat \nu_\mu) \hat \tau^c in supersymmetry and may account for a possibly large muon anomalous magnetic moment. Neutrino masses (with bimaximal mixing) may be generated from the spontaneous and soft breaking of this lepton symmetry.Comment: 10 pages, including 2 figure

    Supersymmetry Breaking through Transparent Extra Dimensions

    Get PDF
    We propose a new framework for mediating supersymmetry breaking through an extra dimension. It predicts positive scalar masses and solves the supersymmetric flavor problem. Supersymmetry breaks on a ``source'' brane that is spatially separated from a parallel brane on which the standard model matter fields and their superpartners live. The gauge and gaugino fields propagate in the bulk, the latter receiving a supersymmetry breaking mass from direct couplings to the source brane. Scalar masses are suppressed at the high scale but are generated via the renormalization group. We briefly discuss the spectrum and collider signals for a range of compactification scales.Comment: 20 page
    corecore