106 research outputs found

    Phase II study of TP300 in patients with advanced gastric or gastro-oesophageal junction adenocarcinoma

    Get PDF
    Background: TP300, a recently developed synthetic camptothecin analogue, is a highly selective topoisomerase I inhibitor. A phase I study showed good safety and tolerability. As camptothecins have proven active in oesophago-gastric adenocarcinomas, in this phase II study we assessed the efficacy and safety of TP300 in patients with gastric or gastro-oesophageal junction (GOJ) adenocarcinomas. Methods: Eligible patients had metastatic or locally advanced gastric or Siewert Types II or III GOJ inoperable adenocarcinoma. Patients were chemotherapy naïve unless this had been administered in the perioperative setting. TP300 was administered as a 1-h intravenous infusion every 3 weeks (a cycle) for up to 6 cycles at a starting dose of 8 mg/m2 with intra-patient escalation to 10 mg/m2 from cycle 2 in the absence of dose-limiting toxicity. Tumour responses (RECIST 1.1) were assessed every 6 weeks. Toxicity was recorded by NCI-CTCAE version 3.0. Using a modified two-stage Simon design (Stage I and II), a total of 43 patients were to be included providing there were 3 of 18 patients with objective response in Stage I of the study. Results: In Stage I of the study 20 patients (14 males, 6 females), median age 67 years (range 40 − 82), performance status ECOG 0/1, with GC [14] or GOJ carcinoma [6] were enrolled. Of the 16 evaluable patients, 11 received the planned dose increase to 10 mg/m2 at cycle 2, 2 decreased to 6 mg/m2, and 3 continued on 8 mg/m2. There were no objective responses after 2 cycles of treatment. Twelve patients had stable disease for 1 − 5 months and 4 had progressive disease. Median progression free survival (PFS) was 4.1 months (CI [1.6 − 4.9]), median time to progression (TTP) was 2.9 months (CI [1.4 − 4.2]). Grade 3/4 toxicities (worst grade all cycles) included 7 patients (35 %) with neutropenia, 4 patients (20 %) with anaemia, 2 patients (10 %) with thrombocytopenia, and 3 patients (15 %) with fatigue. This study was terminated at the end of Stage I due to a lack of the required (3/18) responders. Conclusions: This study of TP300 showed good drug tolerability but it failed to demonstrate sufficient efficacy as measured by radiological response

    Phase II study of TP300 in patients with advanced gastric or gastro-oesophageal junction adenocarcinoma

    Get PDF
    Background: TP300, a recently developed synthetic camptothecin analogue, is a highly selective topoisomerase I inhibitor. A phase I study showed good safety and tolerability. As camptothecins have proven active in oesophago-gastric adenocarcinomas, in this phase II study we assessed the efficacy and safety of TP300 in patients with gastric or gastro-oesophageal junction (GOJ) adenocarcinomas. Methods: Eligible patients had metastatic or locally advanced gastric or Siewert Types II or III GOJ inoperable adenocarcinoma. Patients were chemotherapy naïve unless this had been administered in the perioperative setting. TP300 was administered as a 1-h intravenous infusion every 3 weeks (a cycle) for up to 6 cycles at a starting dose of 8 mg/m2 with intra-patient escalation to 10 mg/m2 from cycle 2 in the absence of dose-limiting toxicity. Tumour responses (RECIST 1.1) were assessed every 6 weeks. Toxicity was recorded by NCI-CTCAE version 3.0. Using a modified two-stage Simon design (Stage I and II), a total of 43 patients were to be included providing there were 3 of 18 patients with objective response in Stage I of the study. Results: In Stage I of the study 20 patients (14 males, 6 females), median age 67 years (range 40 − 82), performance status ECOG 0/1, with GC [14] or GOJ carcinoma [6] were enrolled. Of the 16 evaluable patients, 11 received the planned dose increase to 10 mg/m2 at cycle 2, 2 decreased to 6 mg/m2, and 3 continued on 8 mg/m2. There were no objective responses after 2 cycles of treatment. Twelve patients had stable disease for 1 − 5 months and 4 had progressive disease. Median progression free survival (PFS) was 4.1 months (CI [1.6 − 4.9]), median time to progression (TTP) was 2.9 months (CI [1.4 − 4.2]). Grade 3/4 toxicities (worst grade all cycles) included 7 patients (35 %) with neutropenia, 4 patients (20 %) with anaemia, 2 patients (10 %) with thrombocytopenia, and 3 patients (15 %) with fatigue. This study was terminated at the end of Stage I due to a lack of the required (3/18) responders. Conclusions: This study of TP300 showed good drug tolerability but it failed to demonstrate sufficient efficacy as measured by radiological response

    Harmonin-b, an actin-binding scaffold protein, is involved in the adaptation of mechanoelectrical transduction by sensory hair cells

    Get PDF
    We assessed the involvement of harmonin-b, a submembranous protein containing PDZ domains, in the mechanoelectrical transduction machinery of inner ear hair cells. Harmonin-b is located in the region of the upper insertion point of the tip link that joins adjacent stereocilia from different rows and that is believed to gate transducer channel(s) located in the region of the tip link's lower insertion point. In Ush1cdfcr-2J/dfcr-2J mutant mice defective for harmonin-b, step deflections of the hair bundle evoked transduction currents with altered speed and extent of adaptation. In utricular hair cells, hair bundle morphology and maximal transduction currents were similar to those observed in wild-type mice, but adaptation was faster and more complete. Cochlear outer hair cells displayed reduced maximal transduction currents, which may be the consequence of moderate structural anomalies of their hair bundles. Their adaptation was slower and displayed a variable extent. The latter was positively correlated with the magnitude of the maximal transduction current, but the cells that showed the largest currents could be either hyperadaptive or hypoadaptive. To interpret our observations, we used a theoretical description of mechanoelectrical transduction based on the gating spring theory and a motor model of adaptation. Simulations could account for the characteristics of transduction currents in wild-type and mutant hair cells, both vestibular and cochlear. They led us to conclude that harmonin-b operates as an intracellular link that limits adaptation and engages adaptation motors, a dual role consistent with the scaffolding property of the protein and its binding to both actin filaments and the tip link component cadherin-23

    Coupling and Elastic Loading Affect the Active Response by the Inner Ear Hair Cell Bundles

    Get PDF
    Active hair bundle motility has been proposed to underlie the amplification mechanism in the auditory endorgans of non-mammals and in the vestibular systems of all vertebrates, and to constitute a crucial component of cochlear amplification in mammals. We used semi-intact in vitro preparations of the bullfrog sacculus to study the effects of elastic mechanical loading on both natively coupled and freely oscillating hair bundles. For the latter, we attached glass fibers of different stiffness to the stereocilia and observed the induced changes in the spontaneous bundle movement. When driven with sinusoidal deflections, hair bundles displayed phase-locked response indicative of an Arnold Tongue, with the frequency selectivity highest at low amplitudes and decreasing under stronger stimulation. A striking broadening of the mode-locked response was seen with increasing stiffness of the load, until approximate impedance matching, where the phase-locked response remained flat over the physiological range of frequencies. When the otolithic membrane was left intact atop the preparation, the natural loading of the bundles likewise decreased their frequency selectivity with respect to that observed in freely oscillating bundles. To probe for signatures of the active process under natural loading and coupling conditions, we applied transient mechanical stimuli to the otolithic membrane. Following the pulses, the underlying bundles displayed active movement in the opposite direction, analogous to the twitches observed in individual cells. Tracking features in the otolithic membrane indicated that it moved in phase with the bundles. Hence, synchronous active motility evoked in the system of coupled hair bundles by external input is sufficient to displace large overlying structures

    Angiogenesis is an independent prognostic factor in malignant mesothelioma

    Get PDF
    Angiogenesis is essential for tumour growth beyond 1 to 2 mm in diameter. The clinical relevance of angiogenesis, as assessed by microvessel density (MVD), is unclear in malignant mesothelioma (MM). Immunohistochemistry was performed on 104 archival, paraffin-embedded, surgically resected MM samples with an anti-CD34 monoclonal antibody, using the Streptavidin–biotin complex immunoperoxidase technique. 93 cases were suitable for microvessel quantification. MVD was obtained from 3 intratumoural hotspots, using a Chalkley eyepiece graticule at × 250 power. MVD was correlated with survival by Kaplan–Meier and log-rank analysis. A stepwise, multivariate Cox model was used to compare MVD with known prognostic factors and the EORTC and CALGB prognostic scoring systems. Overall median survival from the date of diagnosis was 5.0 months. Increasing MVD was a poor prognostic factor in univariate analysis (P = 0.02). Independent indicators of poor prognosis in multivariate analysis were non-epithelial cell type (P = 0.002), performance status > 0 (P = 0.003) and increasing MVD (P = 0.01). In multivariate Cox analysis, MVD contributed independently to the EORTC (P = 0.006), but not to the CALGB (P = 0.1), prognostic groups. Angiogenesis, as assessed by MVD, is a poor prognostic factor in MM, independent of other clinicopathological variables and the EORTC prognostic scoring system. Further work is required to assess the prognostic importance of angiogenic regulatory factors in this disease. http://www.bjcancer.com © 2001 Cancer Research Campaign  http://www.bjcancer.co

    Glucose transporter 1 expression as a marker of prognosis in oesophageal adenocarcinoma.

    Get PDF
    BACKGROUND: The current TNM staging system for oesophageal adenocarcinoma (OAC) has limited ability to stratify patients and inform clinical management following neo-adjuvant chemotherapy and surgery. RESULTS: Functional genomic analysis of the gene expression data using Gene Set Enrichment Analysis (GSEA) identified GLUT1 as putative prognostic marker in OAC.In the discovery cohort GLUT1 positivity was observed in 114 patients (80.9%) and was associated with poor overall survival (HR 2.08, 95% CI 1.1-3.94; p=0.024) following multivariate analysis. A prognostic model incorporating GLUT1, CRM and nodal status stratified patients into good, intermediate and poor prognosis groups (p< 0.001) with a median overall survival of 16.6 months in the poorest group.In the validation set 182 patients (69.5%) were GLUT1 positive and the prognostic model separated patients treated with neo-adjuvant chemotherapy and surgery (p<0.001) and surgery alone (p<0.001) into three prognostic groups. PATIENTS AND METHODS: Transcriptional profiling of 60 formalin fixed paraffin-embedded (FFPE) biopsies was performed. GLUT1 immunohistochemical staining was assessed in a discovery cohort of 141 FFPE OAC samples treated with neo-adjuvant chemotherapy and surgery at the Northern Ireland Cancer Centre from 2004-2012. Validation was performed in 262 oesophageal adenocarcinomas collected at four OCCAMS consortium centres. The relationship between GLUT1 staining, T stage, N stage, lymphovascular invasion and circumferential resection margin (CRM) status was assessed and a prognostic model developed using Cox Proportional Hazards. CONCLUSIONS: GLUT1 staining combined with CRM and nodal status identifies a poor prognosis sub-group of OAC patients and is a novel prognostic marker following potentially curative surgical resection

    Erratum to: Methods for evaluating medical tests and biomarkers

    Get PDF
    [This corrects the article DOI: 10.1186/s41512-016-0001-y.]

    Immune activation by DNA damage predicts response to chemotherapy and survival in oesophageal adenocarcinoma.

    Get PDF
    OBJECTIVE: Current strategies to guide selection of neoadjuvant therapy in oesophageal adenocarcinoma (OAC) are inadequate. We assessed the ability of a DNA damage immune response (DDIR) assay to predict response following neoadjuvant chemotherapy in OAC. DESIGN: Transcriptional profiling of 273 formalin-fixed paraffin-embedded prechemotherapy endoscopic OAC biopsies was performed. All patients were treated with platinum-based neoadjuvant chemotherapy and resection between 2003 and 2014 at four centres in the Oesophageal Cancer Clinical and Molecular Stratification consortium. CD8 and programmed death ligand 1 (PD-L1) immunohistochemical staining was assessed in matched resection specimens from 126 cases. Kaplan-Meier and Cox proportional hazards regression analysis were applied according to DDIR status for recurrence-free survival (RFS) and overall survival (OS). RESULTS: A total of 66 OAC samples (24%) were DDIR positive with the remaining 207 samples (76%) being DDIR negative. DDIR assay positivity was associated with improved RFS (HR: 0.61; 95% CI 0.38 to 0.98; p=0.042) and OS (HR: 0.52; 95% CI 0.31 to 0.88; p=0.015) following multivariate analysis. DDIR-positive patients had a higher pathological response rate (p=0.033), lower nodal burden (p=0.026) and reduced circumferential margin involvement (p=0.007). No difference in OS was observed according to DDIR status in an independent surgery-alone dataset.DDIR-positive OAC tumours were also associated with the presence of CD8+ lymphocytes (intratumoural: p<0.001; stromal: p=0.026) as well as PD-L1 expression (intratumoural: p=0.047; stromal: p=0.025). CONCLUSION: The DDIR assay is strongly predictive of benefit from DNA-damaging neoadjuvant chemotherapy followed by surgical resection and is associated with a proinflammatory microenvironment in OAC.This work was supported by the Gastrointestinal Cancer Research Charitable Fund administered by the Belfast Health and Social Care Trust, the Cancer Research UK Experimental Cancer Medicine Centre Initiative, Invest Northern Ireland and Almac Diagnostics. Oesophageal Cancer Clinical and Molecular Stratification (OCCAMS) was funded by a programme grant from Cancer Research UK (RG66287). We would like to thank the Human Research Tissue Bank, which is supported by the National Institute for Health Research (NIHR) Cambridge Biomedical Research Centre from Addenbrooke’s Hospital. Additional infrastructure support was provided from the CRUK funded Experimental Cancer Medicine Centre. RF has programmatic funding from the Medical Research Council and infrastructure support from the NIHR Biomedical Research Centre and the Cambridge Experimental Medicine Centre. Tissue samples used in this research were received from the Northern Ireland Biobank, which is funded by HSC Research and Development Division of the Public Health Agency in Northern Ireland and Cancer Research UK through the Belfast Cancer Research UK Centre and the Northern Ireland Experimental Cancer Medicine Centre; additional support was received from the Friends of the Cancer Centre. The Northern Ireland Molecular Pathology Laboratory has received funding from Cancer Research UK, the Friends of the Cancer Centre and the Sean Crummey Foundation. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement no 721906. The OCCAMS Study Group is a multicentre UK collaboration
    corecore