399 research outputs found

    Altered distribution of mucosal NK cells during HIV infection.

    Get PDF
    The human gut mucosa is a major site of human immunodeficiency virus (HIV) infection and infection-associated pathogenesis. Increasing evidence shows that natural killer (NK) cells have an important role in control of HIV infection, but the mechanism(s) by which they mediate antiviral activity in the gut is unclear. Here, we show that two distinct subsets of NK cells exist in the gut, one localized to intraepithelial spaces (intraepithelial lymphocytes, IELs) and the other to the lamina propria (LP). The frequency of both subsets of NK cells was reduced in chronic infection, whereas IEL NK cells remained stable in spontaneous controllers with protective killer immunoglobulin-like receptor/human leukocyte antigen genotypes. Both IEL and LP NK cells were significantly expanded in immunological non-responsive patients, who incompletely recovered CD4+ T cells on highly active antiretroviral therapy (HAART). These data suggest that both IEL and LP NK cells may expand in the gut in an effort to compensate for compromised CD4+ T-cell recovery, but that only IEL NK cells may be involved in providing durable control of HIV in the gut

    Structural and Electronic Properties of Small Neutral (MgO)n Clusters

    Get PDF
    Ab initio Perturbed Ion (PI) calculations are reported for neutral stoichiometric (MgO)n clusters (n<14). An extensive number of isomer structures was identified and studied. For the isomers of (MgO)n (n<8) clusters, a full geometrical relaxation was considered. Correlation corrections were included for all cluster sizes using the Coulomb-Hartree-Fock (CHF) model proposed by Clementi. The results obtained compare favorably to the experimental data and other previous theoretical studies. Inclusion of correlaiotn is crucial in order to achieve a good description of these systems. We find an important number of new isomers which allows us to interpret the experimental magic numbers without the assumption of structures based on (MgO)3 subunits. Finally, as an electronic property, the variations in the cluster ionization potential with the cluster size were studied and related to the structural isomer properties.Comment: 24 pages, LaTeX, 7 figures in GIF format. Accepted for publication in Phys. Rev.

    Mouse nuclear myosin I knock-out shows interchangeability and redundancy of myosin isoforms in the cell nucleus.

    Get PDF
    Nuclear myosin I (NM1) is a nuclear isoform of the well-known "cytoplasmic" Myosin 1c protein (Myo1c). Located on the 11(th) chromosome in mice, NM1 results from an alternative start of transcription of the Myo1c gene adding an extra 16 amino acids at the N-terminus. Previous studies revealed its roles in RNA Polymerase I and RNA Polymerase II transcription, chromatin remodeling, and chromosomal movements. Its nuclear localization signal is localized in the middle of the molecule and therefore directs both Myosin 1c isoforms to the nucleus. In order to trace specific functions of the NM1 isoform, we generated mice lacking the NM1 start codon without affecting the cytoplasmic Myo1c protein. Mutant mice were analyzed in a comprehensive phenotypic screen in cooperation with the German Mouse Clinic. Strikingly, no obvious phenotype related to previously described functions has been observed. However, we found minor changes in bone mineral density and the number and size of red blood cells in knock-out mice, which are most probably not related to previously described functions of NM1 in the nucleus. In Myo1c/NM1 depleted U2OS cells, the level of Pol I transcription was restored by overexpression of shRNA-resistant mouse Myo1c. Moreover, we found Myo1c interacting with Pol II. The ratio between Myo1c and NM1 proteins were similar in the nucleus and deletion of NM1 did not cause any compensatory overexpression of Myo1c protein. We observed that Myo1c can replace NM1 in its nuclear functions. Amount of both proteins is nearly equal and NM1 knock-out does not cause any compensatory overexpression of Myo1c. We therefore suggest that both isoforms can substitute each other in nuclear processes

    IL-18, but not IL-15, contributes to the IL-12-dependent induction of NK-cell effector functions by Leishmania infantum in vivo

    Get PDF
    Activation of NK cells is a hallmark of infections with intracellular pathogens. We previously showed that the protozoan parasite Leishmania infantum triggered a rapid NK-cell response in mice that required TLR9-positive myeloid DC and IL-12, but no IFN-α/β. Here, we investigated whether IL-15 or IL-18 mediate the activity of IL-12 or function as independent activators of NK cells. In contrast to earlier studies that described IL-15 as crucial for NK-cell priming in response to TLR ligands, the expression of IFN-γ, FasL, perforin and granzyme B by NK cells in L. infantum-infected mice was completely preserved in the absence of IL-15, whereas the proliferative capacity of NK cells was lower than in WT mice. IFN-γ secretion, cytotoxicity and FasL expression of NK cells from infected IL-18−/− mice were significantly reduced compared with controls, but, unlike IL-12, IL-18 was not essential for NK-cell effector functions. Part of the NK-cell-stimulatory effect of IL-12 was dependent on IL-18. We conclude that IL-15 is not functioning as a universal NK-cell priming signal and that IL-18 contributes to the NK-cell response in visceral leishmaniasis. The cytokine requirements for NK-cell activation appear to differ contingent upon the infectious pathogen

    Behavior therapy for pediatric trichotillomania: Exploring the effects of age on treatment outcome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A randomized controlled trial examining the efficacy of behavior therapy for pediatric trichotillomania was recently completed with 24 participants ranging in age from 7 - 17. The broad age range raised a question about whether young children, older children, and adolescents would respond similarly to intervention. In particular, it is unclear whether the younger children have the cognitive capacity to understand concepts like "urges" and whether they are able to introspect enough to be able to benefit from awareness training, which is a key aspect of behavior therapy for trichotillomania.</p> <p>Methods</p> <p>Participants were randomly assigned to receive either behavior therapy (N = 12) or minimal attention control (N = 12), which was included to control for repeated assessments and the passage of time. Primary outcome measures were the independent evaluator-rated NIMH-Trichotillomania Severity Scale, a semi-structured interview often used in trichotillomania treatment trials, and a post-treatment clinical global impression improvement rating (CGI-I).</p> <p>Results</p> <p>The correlation between age and change in symptom severity for all patients treated in the trial was small and not statistically significant. A 2 (group: behavioral therapy, minimal attention control) × 2 (time: week 0, 8) × 2 (children < 9 yrs., children > 10) ANOVA with independent evaluator-rated symptom severity scores as the continuous dependent variable also detected no main effects for age or for any interactions involving age. In light of the small sample size, the mean symptom severity scores at weeks 0 and 8 for younger and older patients randomized to behavioral therapy were also plotted. Visual inspection of these data indicated that although the groups appeared to have started at similar levels of severity for children ≤ 9 vs. children ≥ 10; the week 8 data show that the three younger children did at least as well as if not slightly better than the nine older children and adolescents.</p> <p>Conclusions</p> <p>Behavior therapy for pediatric trichotillomania appears to be efficacious even in young children. The developmental and clinical implications of these findings will be discussed.</p> <p>Trial Registration</p> <p>Clinicaltrials.gov NCT00043563.</p
    corecore