3,154 research outputs found
In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction
Background - We investigated the potential of magnetic resonance imaging (MRI) to track magnetically labeled mesenchymal stem cells (MR-MSCs) in a swine myocardial infarction (MI) model. Methods and Results - Adult farm pigs (n=5) were subjected to closed-chest experimental MI. MR-MSCs (2.8 to 16×107 cells) were injected intramyocardially under x-ray fluoroscopy. MRIs were obtained on a 1.5T MR scanner to demonstrate the location of the MR-MSCs and were correlated with histology. Contrast-enhanced MRI demonstrated successful injection in the infarct and serial MSC tracking was demonstrated in two animals. Conclusion - MRI tracking of MSCs is feasible and represents a preferred method for studying the engraftment of MSCs in MI
Testing Logselfsimilarity of Soil Particle Size Distribution: Simulation with Minimum Inputs
Particle size distribution (PSD) greatly influences other soil physical properties. A detailed textural analysis is time-consuming and expensive. Soil texture is commonly reported in terms of mass percentages of a small number of size fractions (typically, clay, silt and sand). A method to simulate the PSD from such a poor description or even from the poorest description, consisting in the mass percentages of only two soil size fractions, would be extremly useful for prediction purposes. The goal of this paper is to simulate soil PSDs from the minimum number of inputs, i.e., two and three textural fraction contents, by using a logselfsimilar model and an iterated function system constructed with these data. High quality data on 171 soils are used. Additionally, the characterization of soil texture by entropy-based parameters provided by the model is tested. Results indicate that the logselfsimilar model may be a useful tool to simulate PSD for the construction of pedotransfer functions related to other soil properties when textural information is limited to moderate textural data
Thresholds of biodiversity and ecosystem function in a forest ecosystem undergoing dieback
Ecological thresholds, which represent points of rapid change in ecological properties, are of major scientific and societal concern. However, very little research has focused on empirically testing the occurrence of thresholds in temperate terrestrial ecosystems. To address this knowledge gap, we tested whether a number of biodiversity, ecosystem functions and ecosystem condition metrics exhibited thresholds in response to a gradient of forest dieback, measured as changes in basal area of living trees relative to areas that lacked recent dieback. The gradient of dieback was sampled using 12 replicate study areas in a temperate forest ecosystem. Our results provide novel evidence of several thresholds in biodiversity (namely species richness of ectomycorrhizal fungi, epiphytic lichen and ground flora); for ecological condition (e.g. sward height, palatable seedling abundance) and a single threshold
for ecosystem function (i.e. soil respiration rate). Mechanisms for these thresholds are explored. As climate-induced forest dieback is increasing worldwide, both in scale and speed, these results imply that threshold responses may become increasingly widespread
Kondo effect of non-magnetic impurities and the co-existing charge order in the cuprate superconductors
We present a theory of Kondo effect caused by an induced magnetic moment near
non-magnetic impurities such as Zn and Li in the cuprate superconductors. Based
on the co-existence of charge order and superconductivity, a natural
description of the induced moment and the resulting Kondo effect is obtained in
the framework of bond-operator theory of microscopic t-J-V Hamiltonian. The
local density of state near impurities is computed in a self-consistent
Bogoliubov-de Gennes theory which shows a low-energy peak in the middle of
superconducting gap. Our theory also suggests that the charge order can be
enhanced near impuries.Comment: 5 pages, 4 figure
Soft-gluon effects in WW production at hadron colliders
We consider QCD radiative corrections to WW pair production in hadron
collisions. We perform a calculation that consistently combines next-to-leading
order predictions with soft-gluon resummation valid at small transverse momenta
ptWW of the WW pair. We present results for the ptWW distribution at the LHC up
to (almost) next-to-next-to-leading logarithmic accuracy, and study the effect
of resummation on the charged-lepton distributions. Soft-gluon effects are
typically mild, but they can be strongly enhanced when hard cuts are applied.
The relevant distributions are generally well described by the MC@NLO event
generator.Comment: 15 pages, 12 postscript figures. Error corrected in NLO plot for WW
transverse-mass distribution. Results unchange
Planck Oscillators in the Background Dark Energy
We consider a model for an underpinning of the universe: there are
oscillators at the Planck scale in the background dark energy. Starting from a
coherent array of such oscillators it is possible to get a description from
elementary particles to Black Holes including the usual Hawking-Beckenstein
theory. There is also a description of Gravitation in the above model which
points to a unified description with electromagnetism.Comment: 18 pages latex; talk at the Max Born Symposium 2009, Wrocla
Measuring the Higgs Sector
If we find a light Higgs boson at the LHC, there should be many observable
channels which we can exploit to measure the relevant parameters in the Higgs
sector. We use the SFitter framework to map these measurements on the parameter
space of a general weak-scale effective theory with a light Higgs state of mass
120 GeV. Our analysis benefits from the parameter determination tools and the
error treatment used in new--physics searches, to study individual parameters
and their error bars as well as parameter correlations.Comment: 45 pages, Journal version with comments from refere
Ownership and control in a competitive industry
We study a differentiated product market in which an investor initially owns a controlling stake in one of two competing firms and may acquire a non-controlling or a controlling stake in a competitor, either directly using her own assets, or indirectly via the controlled firm. While industry profits are maximized within a symmetric two product monopoly, the investor attains this only in exceptional cases. Instead, she sometimes acquires a noncontrolling stake. Or she invests asymmetrically rather than pursuing a full takeover if she acquires a controlling one. Generally, she invests indirectly if she only wants to affect the product market outcome, and directly if acquiring shares is profitable per se. --differentiated products,separation of ownership and control,private benefits of control
Renormalized kinetic theory of classical fluids in and out of equilibrium
We present a theory for the construction of renormalized kinetic equations to
describe the dynamics of classical systems of particles in or out of
equilibrium. A closed, self-consistent set of evolution equations is derived
for the single-particle phase-space distribution function , the correlation
function , the retarded and advanced density response
functions to an external potential , and
the associated memory functions . The basis of the theory is an
effective action functional of external potentials that
contains all information about the dynamical properties of the system. In
particular, its functional derivatives generate successively the
single-particle phase-space density and all the correlation and density
response functions, which are coupled through an infinite hierarchy of
evolution equations. Traditional renormalization techniques are then used to
perform the closure of the hierarchy through memory functions. The latter
satisfy functional equations that can be used to devise systematic
approximations. The present formulation can be equally regarded as (i) a
generalization to dynamical problems of the density functional theory of fluids
in equilibrium and (ii) as the classical mechanical counterpart of the theory
of non-equilibrium Green's functions in quantum field theory. It unifies and
encompasses previous results for classical Hamiltonian systems with any initial
conditions. For equilibrium states, the theory reduces to the equilibrium
memory function approach. For non-equilibrium fluids, popular closures (e.g.
Landau, Boltzmann, Lenard-Balescu) are simply recovered and we discuss the
correspondence with the seminal approaches of Martin-Siggia-Rose and of
Rose.and we discuss the correspondence with the seminal approaches of
Martin-Siggia-Rose and of Rose.Comment: 63 pages, 10 figure
- …
