64,481 research outputs found

    Multiloop calculations in supersymmetric theories with the higher covariant derivative regularization

    Full text link
    Most calculations of quantum corrections in supersymmetric theories are made with the dimensional reduction, which is a modification of the dimensional regularization. However, it is well known that the dimensional reduction is not self-consistent. A consistent regularization, which does not break the supersymmetry, is the higher covariant derivative regularization. However, the integrals obtained with this regularization can not be usually calculated analytically. We discuss application of this regularization to the calculations in supersymmetric theories. In particular, it is demonstrated that integrals defining the beta-function are possibly integrals of total derivatives. This feature allows to explain the origin of the exact NSVZ beta-function, relating the beta-function with the anomalous dimensions of the matter superfields. However, integrals for the anomalous dimension should be calculated numerically.Comment: 8 pages, contribution to ACAT 2011 proceeding

    Structure and superconductivity of two different phases of Re3W

    Get PDF
    Two superconducting phases of Re(3)W have been found with different physical properties. One phase crystallizes in a noncentrosymmetric cubic (alpha-Mn) structure and has a superconducting transition temperature T(c) of 7.8 K. The other phase has a hexagonal centrosymmetric structure and is superconducting with a T(c) of 9.4 K. Switching between the two phases is possible by annealing the sample or remelting it. The properties of both phases of Re(3)W have been characterized by powder neutron diffraction, magnetization, and resistivity measurements. The temperature dependences of the lower and upper critical fields have been measured for both phases. These are used to determine the penetration depths and the coherence lengths for these systems

    Evaluating Maintainability Prejudices with a Large-Scale Study of Open-Source Projects

    Full text link
    Exaggeration or context changes can render maintainability experience into prejudice. For example, JavaScript is often seen as least elegant language and hence of lowest maintainability. Such prejudice should not guide decisions without prior empirical validation. We formulated 10 hypotheses about maintainability based on prejudices and test them in a large set of open-source projects (6,897 GitHub repositories, 402 million lines, 5 programming languages). We operationalize maintainability with five static analysis metrics. We found that JavaScript code is not worse than other code, Java code shows higher maintainability than C# code and C code has longer methods than other code. The quality of interface documentation is better in Java code than in other code. Code developed by teams is not of higher and large code bases not of lower maintainability. Projects with high maintainability are not more popular or more often forked. Overall, most hypotheses are not supported by open-source data.Comment: 20 page

    Yield Curve Shapes and the Asymptotic Short Rate Distribution in Affine One-Factor Models

    Full text link
    We consider a model for interest rates, where the short rate is given by a time-homogenous, one-dimensional affine process in the sense of Duffie, Filipovic and Schachermayer. We show that in such a model yield curves can only be normal, inverse or humped (i.e. endowed with a single local maximum). Each case can be characterized by simple conditions on the present short rate. We give conditions under which the short rate process will converge to a limit distribution and describe the limit distribution in terms of its cumulant generating function. We apply our results to the Vasicek model, the CIR model, a CIR model with added jumps and a model of Ornstein-Uhlenbeck type

    Mapping isoprene emissions over North America using formaldehyde column observations from space

    Get PDF
    We present a methodology for deriving emissions of volatile organic compounds (VOC) using space-based column observations of formaldehyde (HCHO) and apply it to data from the Global Ozone Monitoring Experiment (GOME) satellite instrument over North America during July 1996. The HCHO column is related to local VOC emissions, with a spatial smearing that increases with the VOC lifetime. Isoprene is the dominant HCHO precursor over North America in summer, and its lifetime (≃1 hour) is sufficiently short that the smearing can be neglected. We use the Goddard Earth Observing System global 3-D model of tropospheric chemistry (GEOS-CHEM) to derive the relationship between isoprene emissions and HCHO columns over North America and use these relationships to convert the GOME HCHO columns to isoprene emissions. We also use the GEOS-CHEM model as an intermediary to validate the GOME HCHO column measurements by comparison with in situ observations. The GEOS-CHEM model including the Global Emissions Inventory Activity (GEIA) isoprene emission inventory provides a good simulation of both the GOME data (r2 = 0.69, n = 756, bias = +11%) and the in situ summertime HCHO measurements over North America (r2 = 0.47, n = 10, bias = −3%). The GOME observations show high values over regions of known high isoprene emissions and a day-to-day variability that is consistent with the temperature dependence of isoprene emission. Isoprene emissions inferred from the GOME data are 20% less than GEIA on average over North America and twice those from the U.S. EPA Biogenic Emissions Inventory System (BEIS2) inventory. The GOME isoprene inventory when implemented in the GEOS-CHEM model provides a better simulation of the HCHO in situ measurements than either GEIA or BEIS2 (r2 = 0.71, n = 10, bias = −10%)

    Dynamics of a two-level system strongly coupled to a high-frequency quantum oscillator

    Get PDF
    Recent experiments on quantum behavior in microfabricated solid-state systems suggest tantalizing connections to quantum optics. Several of these experiments address the prototypical problem of cavity quantum electrodynamics: a two-level system coupled to a quantum harmonic oscillator. Such devices may allow the exploration of parameter regimes outside the near-resonance and weak-coupling assumptions of the ubiquitous rotating-wave approximation (RWA), necessitating other theoretical approaches. One such approach is an adiabatic approximation in the limit that the oscillator frequency is much larger than the characteristic frequency of the two-level system. A derivation of the approximation is presented and the time evolution of the two-level-system occupation probability is calculated using both thermal- and coherent-state initial conditions for the oscillator. Closed-form evaluation of the time evolution in the weak-coupling limit provides insight into the differences between the thermal- and coherent-state models. Finally, potential experimental observations in solid-state systems, particularly the Cooper-pair box--nanomechanical resonator system, are discussed and found to be promising.Comment: 16 pages, 11 figures; revised abstract; some text revisions; added two figures and combined others; added references. Submitted to Phys. Rev.

    Decoupling of the ϵ\epsilon-scalar mass in softly broken supersymmetry

    Full text link
    It has been shown recently that the introduction of an unphysical ϵ\epsilon-scalar mass m~\tilde{m} is necessary for the proper renormalization of softly broken supersymmetric theories by dimensional reduction (\drbar). In these theories, both the two-loop β\beta-functions of the scalar masses and their one-loop finite corrections depend on m~2\tilde{m}^2. We find, however, that the dependence on m~2\tilde{m}^2 can be completely removed by slightly modifying the \drbar renormalization scheme. We also show that previous \drbar calculations of one-loop corrections in supersymmetry which ignored the m~2\tilde{m}^2 contribution correspond to using this modified scheme.Comment: 7 pages, LTH-336, NUB-3094-94TH, KEK-TH-40

    A Generalization of Martin's Axiom

    Get PDF
    We define the 1.5\aleph_{1.5} chain condition. The corresponding forcing axiom is a generalization of Martin's Axiom and implies certain uniform failures of club--guessing on ω1\omega_1 that don't seem to have been considered in the literature before.Comment: 36 page

    Localized ferromagnetic resonance force microscopy in permalloy-cobalt films

    Full text link
    We report Ferromagnetic Resonance Force Microscopy (FMRFM) experiments on a justaposed continuous films of permalloy and cobalt. Our studies demonstrate the capability of FMRFM to perform local spectroscopy of different ferromagnetic materials. Theoretical analysis of the uniform resonance mode near the edge of the film agrees quantitatively with experimental data. Our experiments demonstrate the micron scale lateral resolution in determining local magnetic properties in continuous ferromagnetic samples.Comment: 7 pages, 3 figure

    Optical energies of AllnN epilayers

    Get PDF
    Optical energy gaps are measured for high-quality Al1−xInxN-on-GaN epilayers with a range of compositions around the lattice match point using photoluminescence and photoluminescence excitation spectroscopy. These data are combined with structural data to determine the compositional dependence of emission and absorption energies. The trend indicates a very large bowing parameter of 6 eV and differences with earlier reports are discussed. Very large Stokes' shifts of 0.4-0.8 eV are observed in the composition range 0.13<x<0.24, increasing approximately linearly with InN fraction despite the change of sign of the piezoelectric fiel
    corecore