7,494 research outputs found

    Muon anomalous magnetic moment and lepton flavor violation in MSSM

    Full text link
    We give a thorough analysis of the correlation between the muon anomalous magnetic moment and the radiative lepton flavor violating (LFV) processes within the minimal supersymmetric standard model. We find that in the case when the slepton mass eigenstates are nearly degenerate, δaμ\delta a_\mu, coming from SUSY contributions, hardly depends on the lepton flavor mixing and, thus, there is no direct relation between δaμ\delta a_\mu and the LFV processes. On the contrary, if the first two generations' sleptons are much heavier than the 3rd one, i.e., in the effective SUSY scenario, the two quantities are closely related. In the latter scenario, the SUSY parameter space to account for the experimental δaμ\delta a_\mu is quite different from the case of no lepton flavor mixing. Especially, the Higgsino mass parameter μ\mu can be either positive or negative.Comment: 22 pages, 9 figures; Some discussions are modifie

    Erneley Close passive house retrofit : resident experiences and building performance in retrofit to passive house standard

    Get PDF
    In May 2015, Eastlands Housing (now One Manchester) completed work on its retrofit to PassivHaus equivalent (EnerPHit) standard of 32 social housing flats in two blocks in Erneley Close, in the Manchester area Gorton. With a budget of £3.1 million, it was intended that the development would reduce energy bills, create new community greenspace and make the area a destination of choice (PassivHaus Trust 2015). Over the period December 2015 to February 2016, researchers at the Sustainable Housing and Urban Studies Unit (SHUSU) and the Applied Buildings and Energy Research Group (ABERG) monitored the thermal performance of the buildings and interviewed residents to understand their experiences of both the retrofit process and living in their retrofitted-flats. The research contributes to a nascent literature on retrofit of social housing to EnerPHit levels and to a broader literature base on processes and outcomes of retrofit across the UK housing stock. It finds broadly positive outcomes from the Erneley Close improvements, with monitoring indicating high expected comfort levels and the majority of tenants expressing satisfaction with the thermal performance of the flats and the heating systems. As with any major development, there are lessons that can be learnt, and opportunities to enhance the work: these relate primarily to ensuring residents, including vulnerable groups, understand fully how to get the best out of their retrofitted flats; and addressing some non-energy related tenant concerns. The report begins with an overview of the EnerPHit standard (Chapter 2), before outlining the methodology (Chapter 3). Chapters 4 and 5 present the findings from the qualitative interviews and the physical monitoring respectively. Finally, Chapter 6 offers a set of recommendations that relate to this and future social housing energy retrofit

    Experimental study on the exposure level of surgical staff to SARS-CoV-2 in operating rooms with mixing ventilation under negative pressure

    Get PDF
    The purpose of this study was to reveal the exposure level of surgical staff to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from the patient's nose and wound during operations on COVID-19 patients. The tracer gas N2O is used to simulate SARS-CoV-2 from the patient's nose and wound. In this study, concentration levels of tracer gas were measured in the breathing zones of these surgical staff in the operating room under three pressure difference conditions: −5 pa–15 pa and −25 pa compared to the adjunction room. These influencing factors on exposure level are analyzed in terms of ventilation efficiency and the thermal plume distribution characteristics of the patient. The results show that the assistant surgeon faces 4 to 12 times higher levels of exposure to SARS-CoV-2 than other surgical staff. Increasing the pressure difference between the OR lab and adjunction room can reduce the level of exposure for the main surgeon and assistant surgeon. Turning on the cooling fan of the endoscope imager may result in a higher exposure level for the assistant surgeon. Surgical nurses outside of the surgical microenvironment are exposed to similar contaminant concentration levels in the breathing zone as in the exhaust. However, the ventilation efficiency is not constant near the surgical patient or in the rest of the room and will vary with a change in pressure difference. This may suggest that the air may not be fully mixed in the surgical microenvironment

    Analytic mode-matching for acoustic scattering in three dimensional waveguides with flexible walls: Application to a triangular duct

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the links below - Copyright @ 2012 ElsevierAn analytic mode-matching method suitable for the solution of problems involving scattering in three-dimensional waveguides with flexible walls is presented. Prerequisite to the development of such methods is knowledge of closed form analytic expressions for the natural fluid–structure coupled waveforms that propagate in each duct section and the corresponding orthogonality relations. In this article recent theory [J.B. Lawrie, Orthogonality relations for fluid–structural waves in a 3-D rectangular duct with flexible walls, Proc. R. Soc. A. 465 (2009) 2347–2367] is extended to construct the non-separable eigenfunctions for acoustic propagation in a three-dimensional rectangular duct with four flexible walls. For the special case in which the duct cross-section is square, the symmetrical nature of the eigenfunctions enables the eigenmodes for a right-angled, isosceles triangular duct with flexible hypotenuse to be deduced. The partial orthogonality relation together with other important properties of the triangular modes are discussed. A mode-matching solution to the scattering of a fluid–structure coupled wave at the junction of two identical semi-infinite ducts of triangular cross-section is demonstrated for two different sets of “junction” conditions

    Experimental study on the thermal plume from a surgeon in an operating room with mixing ventilation during COVID-19 pandemic

    Get PDF
    Following the outbreak of COVID-19 (SARS-CoV-2) in 2019, studies show positive results in protecting the surgical staff from patients infected by COVID-19 in operating rooms (ORs) with negative pressure. A negative pressure environment inside the operating room (OR) reduces the virus's circulation outside the OR (Chen et al., 2020). Nevertheless, it is unclear whether the surgeon's thermal plume can impact the transport of contaminants up to the breathing zone and thus cause infection in ORs with various pressure differences compared to adjacent rooms. The results show that a gap between the surgical manikin and the operating table greatly affects the development of the thermal plume from the head surgeon. A plate between the surgical manikin and the operating table may significantly influence the airflow distribution in front of the head surgeon more than the pressure difference inside the operating room.publishedVersio

    Poly[di-μ-glycinato-copper(II)]: a two-dimensional coordination polymer

    Get PDF
    The title coordination polymer, [Cu(C2H4NO2)2]n, is two-dimensional and consists of a distorted octa­hedral copper coordination polyhedron with two bidentate glycine ligands chelating the metal through the O and N atoms in a trans-square-planar configuration. The two axial coordination sites are occupied by carbonyl O atoms of neighbouring glycine mol­ecules. The Cu—O distances for the axial O atoms [2.648 (2) and 2.837 (2) Å] are considerably longer than both the Cu—O [1.9475 (17) and 1.9483 (18) Å] and Cu—N [1.988 (2) and 1.948 (2) Å] distances in the equatorial plane, which indicates a strong Jahn–Teller effect. In the crystal, the two-dimensional networks are arranged parallel to (001) and are linked via N—H⋯O hydrogen bonds, forming a three-dimensional arrangement

    Theory of Ion Aggregation and Gelation in Super-Concentrated Electrolytes

    Full text link
    In concentrated electrolytes with asymmetric or irregular ions, such as ionic liquids and solvent-in-salt electrolytes, ion association is more complicated than simple ion-pairing. Large branched aggregates can form at significant concentrations at even moderate salt concentrations. When the extent of ion association reaches a certain threshold, a percolating ionic gel networks can form spontaneously. Gelation is a phenomenon that is well known in polymer physics, but it is practically unstudied in concentrated electrolytes. However, despite this fact, the ion-pairing description is often applied to these systems for the sake of simplicity. In this work, drawing strongly from established theories in polymer physics, we develop a simple thermodynamic model of reversible ionic aggregation and gelation in concentrated electrolytes accounting for the competition between ion solvation and ion association. Our model predicts the populations of ionic clusters of different sizes as a function of salt concentration, it captures the onset of ionic gelation and also the post-gel partitioning of ions into the gel. We discuss the applicability of our model, as well as the implications of its predictions on thermodynamic, transport, and rheological properties

    Vav1/Rac-dependent actin cytoskeleton reorganization is required for lipid raft clustering in T cells

    Get PDF
    Formation of the immunological synapse (IS) in T cells involves large scale molecular movements that are mediated, at least in part, by reorganization of the actin cytoskeleton. Various signaling proteins accumulate at the IS and are localized in specialized membrane microdomains, known as lipid rafts. We have shown previously that lipid rafts cluster and localize at the IS in antigen-stimulated T cells. Here, we provide evidence that lipid raft polarization to the IS depends on an intracellular pathway that involves Vav1, Rac, and actin cytoskeleton reorganization. Thus, lipid rafts did not translocate to the IS in Vav1-deficient (Vav1−/−) T cells upon antigen stimulation. Similarly, T cell receptor transgenic Jurkat T cells also failed to translocate lipid rafts to the IS when transfected with dominant negative Vav1 mutants. Raft polarization induced by membrane-bound cholera toxin cross-linking was also abolished in Jurkat T cells expressing dominant negative Vav1 or Rac mutants and in cells treated with inhibitors of actin polymerization. However, Vav overexpression that induced F-actin polymerization failed to induce lipid rafts clustering. Therefore, Vav is necessary, but not sufficient, to regulate lipid rafts clustering and polarization at the IS, suggesting that additional signals are required

    Experimental Study on the Surgical Microenvironment in an Operating Room with Mixing Ventilation under Positive and Negative Pressure

    Get PDF
    Due to the outbreak of Covid-19, negative pressure operating room (NPOR) are strongly recommended to be applied to prevent spreading virus from infected patients to adjacent rooms during surgery procedures. However, there have been few experimental studies on the effect of OR pressure difference on the surgical microenvironment. This study aims to experimentally investigate the airflow distribution in the surgical microenvironment in an OR under different pressure conditions. All measurements were performed in a fullscale laboratory, which has an area of 62 m2, and a mixing ventilation. The air velocity and temperature in the surgical microenvironment of a lying patient were measured under positive pressure of 5 Pa, 10 Pa, 15 Pa and negative pressure of -5 Pa, -10 Pa and -15 Pa. The effect of heat generated by operating lamps was also considered. The results show that the airflow distribution around the surgical wound is dominated by thermal plume from the patient under the condition of both positive and negative pressure. In other areas of the surgical microenvironment, regardless the pressure difference conditions, the room airflow distribution by ventilation system is the dominant factor on surgical microenvironment. Variations in differential pressure can affect the temperature distribution around the surgical site, with a smaller differential pressure producing a slightly larger vertical temperature gradient.publishedVersio
    corecore