1,210 research outputs found

    Equilibration of isolated macroscopic quantum systems

    Full text link
    We investigate the equilibration of an isolated macroscopic quantum system in the sense that deviations from a steady state become unmeasurably small for the overwhelming majority of times within any sufficiently large time interval. The main requirements are that the initial state, possibly far from equilibrium, exhibits a macroscopic population of at most one energy level and that degeneracies of energy eigenvalues and of energy gaps (differences of energy eigenvalues) are not of exceedingly large multiplicities. Our approach closely follows and extends recent works by Short and Farrelly [2012 New J. Phys. 14 013063], in particular going beyond the realm of finite-dimensional systems and large effective dimensions.Comment: 19 page

    Impact of social distancing during COVID-19 pandemic on crime in Los Angeles and Indianapolis

    Get PDF
    Governments have implemented social distancing measures to address the ongoing COVID-19 pandemic. The measures include instructions that individuals maintain social distance when in public, school closures, limitations on gatherings and business operations, and instructions to remain at home. Social distancing may have an impact on the volume and distribution of crime. Crimes such as residential burglary may decrease as a byproduct of increased guardianship over personal space and property. Crimes such as domestic violence may increase because of extended periods of contact between potential offenders and victims. Understanding the impact of social distancing on crime is critical for ensuring the safety of police and government capacity to deal with the evolving crisis. Understanding how social distancing policies impact crime may also provide insights into whether people are complying with public health measures. Examination of the most recently available data from both Los Angeles, CA, and Indianapolis, IN, shows that social distancing has had a statistically significant impact on a few specific crime types. However, the overall effect is notably less than might be expected given the scale of the disruption to social and economic life

    The challenges of modeling and forecasting the spread of COVID-19

    Get PDF
    The coronavirus disease 2019 (COVID-19) pandemic has placed epidemic modeling at the forefront of worldwide public policy making. Nonetheless, modeling and forecasting the spread of COVID-19 remains a challenge. Here, we detail three regional-scale models for forecasting and assessing the course of the pandemic. This work demonstrates the utility of parsimonious models for early-time data and provides an accessible framework for generating policy-relevant insights into its course. We show how these models can be connected to each other and to time series data for a particular region. Capable of measuring and forecasting the impacts of social distancing, these models highlight the dangers of relaxing nonpharmaceutical public health interventions in the absence of a vaccine or antiviral therapies

    Theory of output coupling for trapped fermionic atoms

    Full text link
    We develop a dynamic theory of output coupling, for fermionic atoms initially confined in a magnetic trap. We consider an exactly soluble one-dimensional model, with a spatially localized delta-type coupling between the atoms in the trap and a continuum of free-particle external modes. Two important special cases are considered for the confinement potential: the infinite box and the harmonic oscillator. We establish that in both cases a bound state of the coupled system appears for any value of the coupling constant, implying that the trap population does not vanish in the infinite-time limit. For weak coupling, the energy spectrum of the outgoing beam exhibits peaks corresponding to the initially occupied energy levels in the trap; the height of these peaks increases with the energy. As the coupling gets stronger, the energy spectrum is displaced towards dressed energies of the fermions in the trap. The corresponding dressed states result from the coupling between the unperturbed fermionic states in the trap, mediated by the coupling between these states and the continuum. In the strong-coupling limit, there is a reinforcement of the lowest-energy dressed mode, which contributes to the energy spectrum of the outgoing beam more strongly than the other modes. This effect is especially pronounced for the one-dimensional box, which indicates that the efficiency of the mode-reinforcement mechanism depends on the steepness of the confinement potential. In this case, a quasi-monochromatic anti-bunched atomic beam is obtained. Results for a bosonic sample are also shown for comparison.Comment: 16 pages, 7 figures, added discussion on time-dependent spectral distribution and corresponding figur

    Diffusion Tensor Based White Matter Tract Atlases for Pediatric Populations

    Get PDF
    Diffusion Tensor Imaging (DTI) is a non-invasive neuroimaging method that has become the most widely employed MRI modality for investigations of white matter fiber pathways. DTI has proven especially valuable for improving our understanding of normative white matter maturation across the life span and has also been used to index clinical pathology and cognitive function. Despite its increasing popularity, especially in pediatric research, the majority of existing studies examining infant white matter maturation depend on regional or white matter skeleton-based approaches. These methods generally lack the sensitivity and spatial specificity of more advanced functional analysis options that provide information about microstructural properties of white matter along fiber bundles. DTI studies of early postnatal brain development show that profound microstructural and maturational changes take place during the first two years of life. The pattern and rate of these changes vary greatly throughout the brain during this time compared to the rest of the life span. For this reason, appropriate image processing of infant MR imaging requires the use of age-specific reference atlases. This article provides an overview of the pre-processing, atlas building, and the fiber tractography procedures used to generate two atlas resources, one for neonates and one for 1- to 2-year-old populations. Via the UNC-NAMIC DTI Fiber Analysis Framework, our pediatric atlases provide the computational templates necessary for the fully automatic analysis of infant DTI data. To the best of our knowledge, these atlases are the first comprehensive population diffusion fiber atlases in early pediatric ages that are publicly available

    Measurement of isotope shift in Eu II

    Get PDF
    The isotope shift between singly-charged ^Eu and ^Eu in the 4f^7(^8S^o)6s^9S_4-4f^7(^8S^o)6p_1/2>(J=4) transition at 4129 A has been measured using fast ion beam-laser technique. This Eu line has attracted interest in connection with efforts of obtaining a cosmochronometer based on observed Th/Eu abundance ratios. Knowledge of the isotope shift is of importance in order to check that contaminations from line blends do not contribute to the line intensity of Eu II. The measured value of the isotope shift -0.1527(2) cm-1 (= -4578 MHz) is consistent with the old spectroscopic value of Krebs and Winkler -0.1503(25) cm-1 using a Fabry Perot interferometer, while the accuracy is improved substantially.Comment: 12 pages, in press for Physica Scripta, in swete

    Kepler-16: A Transiting Circumbinary Planet

    Get PDF
    We report the detection of a planet whose orbit surrounds a pair of low-mass stars. Data from the Kepler spacecraft reveal transits of the planet across both stars, in addition to the mutual eclipses of the stars, giving precise constraints on the absolute dimensions of all three bodies. The planet is comparable to Saturn in mass and size, and is on a nearly circular 229-day orbit around its two parent stars. The eclipsing stars are 20% and 69% as massive as the sun, and have an eccentric 41-day orbit. The motions of all three bodies are confined to within 0.5 degree of a single plane, suggesting that the planet formed within a circumbinary disk.Comment: Science, in press; for supplemental material see http://www.sciencemag.org/content/suppl/2011/09/14/333.6049.1602.DC1/1210923.Doyle.SOM.pd
    • …
    corecore