3,229 research outputs found

    Parton Distributions in the Valon Model

    Get PDF
    The parton distribution functions determined by CTEQ at low Q2Q^2 are used as inputs to test the validity of the valon model. The valon distributions in a nucleon are first found to be nearly QQ independent. The parton distribution in a valon are shown to be consistent with being universal, independent of the valon type. The momentum fractions of the partons in the valon add up separately to one. These properties affirm the validity of the valon model. The various distributions are parameterized for convenient application of the model.Comment: 9 pages + 9 figures in ep

    Nutrient supply from organic amendments applied to unvegetated soil, lettuce and orchardgrass

    Get PDF
    Organic sources of nutrients are increasingly being used in horticultural and certified organic production. The nutrient-supplying potentials of poultry manure compost (PM), feather meal (FM), alfalfa meal (AA) and vermicastings (VC) and an unamended control were measured in a growth room experiment. The amendments were applied at rates equivalent to 200, 400 and 800 kg total N ha-1 to a soil of low fertility. Nitrogen supply rates and concentrations were measured over 6 mo in unvegetated pots using PRS™ probes and KCl extraction, respectively. Biomass of lettuce (Lactuca sativa L.) and orchardgrass (Dactylis glomerata L.) and N uptake of orchardgrass were measured. Repeated measures analysis revealed significant amendment × rate × time interaction effects for N supply rate and concentration. Of total N applied, available N was 50 to 70% in the FM and PM treatments, 10 to 40% in the AA treatments, and 10% in the VC treatments. High rates of FM and PM were toxic to lettuce but produced good orchardgrass yields. VC was safe for lettuce but low N availability limited long-term orchardgrass growth. Higher application rates did not result in corresponding increases in nutrient supply. Consideration should be given to balancing the ratio of available nutrients in amendments with plant requirements

    Idealized Multigrid Algorithm for Staggered Fermions

    Full text link
    An idealized multigrid algorithm for the computation of propagators of staggered fermions is investigated. Exemplified in four-dimensional SU(2)SU(2) gauge fields, it is shown that the idealized algorithm preserves criticality under coarsening. The same is not true when the coarse grid operator is defined by the Galerkin prescription. Relaxation times in computations of propagators are small, and critical slowing is strongly reduced (or eliminated) in the idealized algorithm. Unfortunately, this algorithm is not practical for production runs, but the investigations presented here answer important questions of principle.Comment: 11 pages, no figures, DESY 93-046; can be formatted with plain LaTeX article styl

    Endocrinology: Clinical significance of invisible or partially visible luteinizing hormone

    Get PDF
    It is well known that luteinizing hormone (LH), like many other glycoproteins, is heterogeneous and presents several circulating isoforms. Recently, new sensitive immunometric assays measuring intact LH were developed. These assays have been found to underestimate or to be incapable of recognizing LH in some patients. This study was undertaken to determine the prevalence of such cases and to define their clinical characteristics. We compared three LH assays using as capture antibodies either a monoclonal antibody that reacts exclusively with intact LH (ES 600 Boehringer, Stratus Baxter) or a monoclonal antibody against the β subunit of LH (IMX Abbott). In 17% of 90 patients tested, ES 600 measured > 50% lower LH concentrations when compared with the EVIX. Moreover, in two cases LH was not detectable by ES 600 or Stratus, whereas it was normal with the EVIX. We found another five such cases and discuss here the clinical data and results of different hormone measurements in these seven cases of ‘invisible LH'. Although bioactive LH (mouse Leydig cell assay) was normal, the existence of low or even undetectable LH was clinically confusing and led to expensive complementary investigations such as gonadotrophin-releasing hormone analogue tests and magnetic resonance imaging. The uses and limitations of these assays are illustrated by different clinical situations in which the results of the different assays have been misleadin

    Experimental Control and Characterization of Autophagy in Drosophila

    Get PDF
    Insects such as the fruit fly Drosophila melanogaster, which fundamentally reorganize their body plan during metamorphosis, make extensive use of autophagy for their normal development and physiology. In the fruit fly, the hepatic/adipose organ known as the fat body accumulates nutrient stores during the larval feeding stage. Upon entering metamorphosis, as well as in response to starvation, these nutrients are mobilized through a massive induction of autophagy, providing support to other tissues and organs during periods of nutrient deprivation. High levels of autophagy are also observed in larval tissues destined for elimination, such as the salivary glands and larval gut. Drosophila is emerging as an important system for studying the functions and regulation of autophagy in an in vivo setting. In this chapter we describe reagents and methods for monitoring autophagy in Drosophila, focusing on the larval fat body. We also describe methods for experimentally activating and inhibiting autophagy in this system and discuss the potential for genetic analysis in Drosophila to identify novel genes involved in autophagy

    Impact of 2050 climate change on North American wildfire: consequences for ozone air quality

    Get PDF
    We estimate future area burned in the Alaskan and Canadian forest by the mid-century (2046–2065) based on the simulated meteorology from 13 climate models under the A1B scenario. We develop ecoregion-dependent regressions using observed relationships between annual total area burned and a suite of meteorological variables and fire weather indices, and apply these regressions to the simulated meteorology. We find that for Alaska and western Canada, almost all models predict significant (p < 0.05) increases in area burned at the mid-century, with median values ranging from 150 to 390 %, depending on the ecoregion. Such changes are attributed to the higher surface air temperatures and 500 hPa geopotential heights relative to present day, which together lead to favorable conditions for wildfire spread. Elsewhere the model predictions are not as robust. For the central and southern Canadian ecoregions, the models predict increases in area burned of 45–90 %. Except for the Taiga Plain, where area burned decreases by 50 %, no robust trends are found in northern Canada, due to the competing effects of hotter weather and wetter conditions there. Using the GEOS-Chem chemical transport model, we find that changes in wildfire emissions alone increase mean summertime surface ozone levels by 5 ppbv for Alaska, 3 ppbv for Canada, and 1 ppbv for the western US by the mid-century. In the northwestern US states, local wildfire emissions at the mid-century enhance surface ozone by an average of 1 ppbv, while transport of boreal fire pollution further degrades ozone air quality by an additional 0.5 ppbv. The projected changes in wildfire activity increase daily summertime surface ozone above the 95th percentile by 1 ppbv in the northwestern US, 5 ppbv in the high latitudes of Canada, and 15 ppbv in Alaska, suggesting a greater frequency of pollution episodes in the future atmosphere

    Efficient Retrieval and Ranking of Undesired Package Cycles in Large Software Systems

    Get PDF
    International audienceMany design guidelines state that a software system architecture should avoid cycles between its packages. Yet such cycles appear again and again in many programs. We believe that the existing approaches for cycle detection are too coarse to assist the developers to remove cycles from their programs. In this paper, we describe an efficient algorithm that performs a fine-grained analysis of the cycles among the packages of an application. In addition, we define a metric to rank cycles by their level of undesirability, prioritizing the cycles that seems the more undesired by the developers. Our approach is validated on two large and mature software systems in Java and Smalltalk

    Impact of 2050 climate change on North American wildfire: consequences for ozone air quality

    Get PDF
    We estimate future area burned in the Alaskan and Canadian forest by the mid-century (2046–2065) based on the simulated meteorology from 13 climate models under the A1B scenario. We develop ecoregion-dependent regressions using observed relationships between annual total area burned and a suite of meteorological variables and fire weather indices, and apply these regressions to the simulated meteorology. We find that for Alaska and western Canada, almost all models predict significant (p < 0.05) increases in area burned at the mid-century, with median values ranging from 150 to 390 %, depending on the ecoregion. Such changes are attributed to the higher surface air temperatures and 500 hPa geopotential heights relative to present day, which together lead to favorable conditions for wildfire spread. Elsewhere the model predictions are not as robust. For the central and southern Canadian ecoregions, the models predict increases in area burned of 45–90 %. Except for the Taiga Plain, where area burned decreases by 50 %, no robust trends are found in northern Canada, due to the competing effects of hotter weather and wetter conditions there. Using the GEOS-Chem chemical transport model, we find that changes in wildfire emissions alone increase mean summertime surface ozone levels by 5 ppbv for Alaska, 3 ppbv for Canada, and 1 ppbv for the western US by the mid-century. In the northwestern US states, local wildfire emissions at the mid-century enhance surface ozone by an average of 1 ppbv, while transport of boreal fire pollution further degrades ozone air quality by an additional 0.5 ppbv. The projected changes in wildfire activity increase daily summertime surface ozone above the 95th percentile by 1 ppbv in the northwestern US, 5 ppbv in the high latitudes of Canada, and 15 ppbv in Alaska, suggesting a greater frequency of pollution episodes in the future atmosphere

    Locations of marine animals revealed by carbon isotopes

    Get PDF
    Knowing the distribution of marine animals is central to understanding climatic and other environmental influences on population ecology. This information has proven difficult to gain through capture-based methods biased by capture location. Here we show that marine location can be inferred from animal tissues. As the carbon isotope composition of animal tissues varies with sea surface temperature, marine location can be identified by matching time series of carbon isotopes measured in tissues to sea surface temperature records. Applying this technique to populations of Atlantic salmon (Salmo salar L.) produces isotopically-derived maps of oceanic feeding grounds, consistent with the current understanding of salmon migrations, that additionally reveal geographic segregation in feeding grounds between individual philopatric populations and age-classes. Carbon isotope ratios can be used to identify the location of open ocean feeding grounds for any pelagic animals for which tissue archives and matching records of sea surface temperature are available

    Can black holes be torn up by phantom dark energy in cyclic cosmology?

    Full text link
    Infinitely cyclic cosmology is often frustrated by the black hole problem. It has been speculated that this obstacle in cyclic cosmology can be removed by taking into account a peculiar cyclic model derived from loop quantum cosmology or the braneworld scenario, in which phantom dark energy plays a crucial role. In this peculiar cyclic model, the mechanism of solving the black hole problem is through tearing up black holes by phantom. However, using the theory of fluid accretion onto black holes, we show in this paper that there exists another possibility: that black holes cannot be torn up by phantom in this cyclic model. We discussed this possibility and showed that the masses of black holes might first decrease and then increase, through phantom accretion onto black holes in the expanding stage of the cyclic universe.Comment: 6 pages, 2 figures; discussions adde
    corecore